/*! * \file * * * \brief Compute, save and load ramps for stepper motors (implementation) * * * \author Simone Zinanni * \author Bernie Innocenti * \author Giovanni Bajo * \author Daniele Basile * * * The formula used by the ramp is the following: * *
 *            a * b
 * f(t) = -------------
 *         lerp(a,b,t)
 * 
* * Where a and b are the maximum and minimum speed * respectively (minimum and maximum wavelength respectively), and lerp * is a linear interpolation with a factor: * *
 * lerp(a,b,t) =  a + t * (b - a)  =  (a * (1 - t)) + (b * t)
 * 
* * t must be in the [0,1] interval. It is easy to see that the * following holds true: * *
 * f(0) = b,   f(1) = a
 * 
* * And that the function is monotonic. So, the function effectively interpolates * between the maximum and minimum speed through its domain ([0,1] -> [b,a]). * * The curve drawn by this function is similar to 1 / (sqrt(n)), so it is slower * than a linear acceleration (which would be 1/n). * * The floating point version uses a slightly modified function which accepts * the parameter in the domain [0, MT] (where MT is maxTime, the length of the * ramp, which is a setup parameter for the ramp). This is done to reduce the * number of operations per step. The formula looks like this: * *
 *               a * b * MT
 * g(t) = ----------------------------
 *           (a * MT) + t * (b - a)
 * 
* * It can be shown that this g(t) = f(t * MT). The denominator * is a linear interpolation in the range [b*MT, a*MT], as t moves in the * interval [0, MT]. So the interpolation interval of the function is again * [b, a]. The implementation caches the value of the numerator and parts * of the denominator, so that the formula becomes: * *
 * alpha = a * b * MT
 * beta = a * MT
 * gamma = b - a
 *
 *                alpha
 * g(t) = ----------------------
 *           beta + t * gamma
 * 
* * and t is exactly the parameter that ramp_evaluate() gets, * that is the current time (in range [0, MT]). The operations performed * for each step are just an addition, a multiplication and a division. * * The fixed point version of the formula instead transforms the original * function as follows: * *
 *                   a * b                         a
 *  f(t) =  -------------------------  =  --------------------
 *                 a                         a
 *           b * ( - * (1 - t) + t )         - * (1 - t) + t
 *                 b                         b
 * 
* * t must be computed by dividing the current time (24 bit integer) * by the maximum time (24 bit integer). This is done by precomputing the * reciprocal of the maximum time as a 0.32 fixed point number, and multiplying * it to the current time. Multiplication is performed 8-bits a time by * FIX_MULT32(), so that we end up with a 0.16 fixed point number for * t (and 1-t is just its twos-complement negation). * a/b is in the range [0,1] (because a is always less than b, * being the minimum wavelength), so it is precomputed as a 0.16 fixed point. * The final step is then computing the denominator and executing the division * (32 cycles using the 1-step division instruction in the DSP). * * The assembly implementation is needed for efficiency, but a C version of it * can be easily written, in case it is needed in the future. * */ #include "ramp.h" #include #include // memcpy() void ramp_compute(struct Ramp *ramp, uint32_t clocksRamp, uint16_t clocksMinWL, uint16_t clocksMaxWL) { ASSERT(clocksMaxWL >= clocksMinWL); // Save values in ramp struct ramp->clocksRamp = clocksRamp; ramp->clocksMinWL = clocksMinWL; ramp->clocksMaxWL = clocksMaxWL; #if RAMP_USE_FLOATING_POINT ramp->precalc.gamma = ramp->clocksMaxWL - ramp->clocksMinWL; ramp->precalc.beta = (float)ramp->clocksMinWL * (float)ramp->clocksRamp; ramp->precalc.alpha = ramp->precalc.beta * (float)ramp->clocksMaxWL; #else ramp->precalc.max_div_min = ((uint32_t)clocksMinWL << 16) / (uint32_t)clocksMaxWL; /* Calcola 1/total_time in fixed point .32. Assumiamo che la rampa possa al * massimo avere 25 bit (cioƩ valore in tick fino a 2^25, che con il * prescaler=3 sono circa 7 secondi). Inoltre, togliamo qualche bit di precisione * da destra (secondo quanto specificato in RAMP_CLOCK_SHIFT_PRECISION). */ ASSERT(ramp->clocksRamp < (1UL << (24 + RAMP_CLOCK_SHIFT_PRECISION))); ramp->precalc.inv_total_time = 0xFFFFFFFFUL / (ramp->clocksRamp >> RAMP_CLOCK_SHIFT_PRECISION); ASSERT(ramp->precalc.inv_total_time < 0x1000000UL); #endif } void ramp_setup(struct Ramp* ramp, uint32_t length, uint32_t minFreq, uint32_t maxFreq) { uint32_t minWL, maxWL; minWL = TIME2CLOCKS(FREQ2MICROS(maxFreq)); maxWL = TIME2CLOCKS(FREQ2MICROS(minFreq)); ASSERT2(minWL < 65536UL, "Maximum frequency too high"); ASSERT2(maxWL < 65536UL, "Minimum frequency too high"); ASSERT(maxFreq > minFreq); ramp_compute( ramp, TIME2CLOCKS(length), TIME2CLOCKS(FREQ2MICROS(maxFreq)), TIME2CLOCKS(FREQ2MICROS(minFreq)) ); } void ramp_default(struct Ramp *ramp) { ramp_setup(ramp, RAMP_DEF_TIME, RAMP_DEF_MINFREQ, RAMP_DEF_MAXFREQ); } #if RAMP_USE_FLOATING_POINT float ramp_evaluate(const struct Ramp* ramp, float curClock) { return ramp->precalc.alpha / (curClock * ramp->precalc.gamma + ramp->precalc.beta); } #else INLINE uint32_t fix_mult32(uint32_t m1, uint32_t m2) { uint32_t accum = 0; accum += m1 * ((m2 >> 0) & 0xFF); accum >>= 8; accum += m1 * ((m2 >> 8) & 0xFF); accum >>= 8; accum += m1 * ((m2 >> 16) & 0xFF); return accum; } // a*b >> 16 INLINE uint16_t fix_mult16(uint16_t a, uint32_t b) { return (b*(uint32_t)a) >> 16; } uint16_t FAST_FUNC ramp_evaluate(const struct Ramp* ramp, uint32_t curClock) { uint16_t t = FIX_MULT32(curClock >> RAMP_CLOCK_SHIFT_PRECISION, ramp->precalc.inv_total_time); uint16_t denom = fix_mult16((uint16_t)~t + 1, ramp->precalc.max_div_min) + t; uint16_t cur_delta = ((uint32_t)ramp->clocksMinWL << 16) / denom; return cur_delta; } #endif