#include "mp1.h" #include "hardware.h" #include "config.h" #include #include #include "compression/heatshrink_encoder.h" #include "compression/heatshrink_decoder.h" // FIXME: Describe these static uint8_t lastByte = 0x00; static bool sendParityBlock = false; // FIXME: Describe this INLINE bool GET_BIT(uint8_t byte, int n) { return (byte & (1 << (8-n))) == (1 << (8-n)); } INLINE bool BIT(uint8_t byte, int n) { return ((byte & BV(n-1))>>(n-1)); } static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) { uint8_t parity = 0x00; parity = ((BIT(first, 1) ^ BIT(first, 2) ^ BIT(first, 4) ^ BIT(first, 5) ^ BIT(first, 7))) + ((BIT(first, 1) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 6) ^ BIT(first, 7))<<1) + ((BIT(first, 2) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 8))<<2) + ((BIT(first, 5) ^ BIT(first, 6) ^ BIT(first, 7) ^ BIT(first, 8))<<3) + ((BIT(other, 1) ^ BIT(other, 2) ^ BIT(other, 4) ^ BIT(other, 5) ^ BIT(other, 7))<<4) + ((BIT(other, 1) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 6) ^ BIT(other, 7))<<5) + ((BIT(other, 2) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 8))<<6) + ((BIT(other, 5) ^ BIT(other, 6) ^ BIT(other, 7) ^ BIT(other, 8))<<7); return parity; } static void mp1Decode(MP1 *mp1) { // This decode function is basic and bare minimum. // It does nothing more than extract the data // payload from the buffer and put it into a struct // for further processing. MP1Packet packet; // A decoded packet struct uint8_t *buffer = mp1->buffer; // Get the buffer from the protocol context // Get the header and "remove" it from the buffer uint8_t header = buffer[0]; buffer++; // If header indicates a padded packet, remove // padding if (header & MP1_HEADER_PADDED) { buffer++; } // Set the payload length of the packet to the counted // length minus 1, so we remove the checksum packet.dataLength = mp1->packetLength - 2 - (header & 0x01); // Check if we have received a compressed packet if (header & MP1_HEADER_COMPRESSION) { size_t decompressedSize = decompress(buffer, packet.dataLength); packet.dataLength = decompressedSize; memcpy(buffer, compressionBuffer, decompressedSize); } packet.data = buffer; // If a callback have been specified, let's // call it and pass the decoded packet if (mp1->callback) mp1->callback(&packet); } // Interleaved: // abcabcab cabcabca bcabcabc // 11144477 22255578 63336688 // // 0 1 2 static void mp1Deinterleave(MP1 *mp1) { uint8_t a = (GET_BIT(mp1->interleaveIn[0], 1) << 7) + (GET_BIT(mp1->interleaveIn[1], 2) << 6) + (GET_BIT(mp1->interleaveIn[2], 3) << 5) + (GET_BIT(mp1->interleaveIn[0], 4) << 4) + (GET_BIT(mp1->interleaveIn[1], 5) << 3) + (GET_BIT(mp1->interleaveIn[2], 6) << 2) + (GET_BIT(mp1->interleaveIn[0], 7) << 1) + (GET_BIT(mp1->interleaveIn[1], 8)); uint8_t b = (GET_BIT(mp1->interleaveIn[0], 2) << 7) + (GET_BIT(mp1->interleaveIn[1], 3) << 6) + (GET_BIT(mp1->interleaveIn[2], 4) << 5) + (GET_BIT(mp1->interleaveIn[0], 5) << 4) + (GET_BIT(mp1->interleaveIn[1], 6) << 3) + (GET_BIT(mp1->interleaveIn[2], 1) << 2) + (GET_BIT(mp1->interleaveIn[0], 8) << 1) + (GET_BIT(mp1->interleaveIn[2], 7)); uint8_t c = (GET_BIT(mp1->interleaveIn[0], 3) << 7) + (GET_BIT(mp1->interleaveIn[1], 1) << 6) + (GET_BIT(mp1->interleaveIn[2], 2) << 5) + (GET_BIT(mp1->interleaveIn[0], 6) << 4) + (GET_BIT(mp1->interleaveIn[1], 4) << 3) + (GET_BIT(mp1->interleaveIn[2], 5) << 2) + (GET_BIT(mp1->interleaveIn[1], 7) << 1) + (GET_BIT(mp1->interleaveIn[2], 8)); mp1->interleaveIn[0] = a; mp1->interleaveIn[1] = b; mp1->interleaveIn[2] = c; } //////////////////////////////////////////////////////////// // The Poll function reads data from the modem, handles // // frame recognition and passes data on to higher layers // // if valid packets are found // //////////////////////////////////////////////////////////// void mp1Poll(MP1 *mp1) { int byte; // A place to store our read byte sendParityBlock = false; // Reset our parity tx indicator // Read bytes from the modem until we reach EOF while ((byte = kfile_getc(mp1->modem)) != EOF) { // We have a byte, increment our read counter // FIXME: Describe error correction if (mp1->reading && (byte != AX25_ESC) ) { mp1->readLength++; if (mp1->readLength % 3 == 0) { // Put bytes in deinterleave buffer mp1->interleaveIn[0] = mp1->buffer[mp1->packetLength-2]; mp1->interleaveIn[1] = mp1->buffer[mp1->packetLength-1]; mp1->interleaveIn[2] = byte; mp1Deinterleave(mp1); mp1->buffer[mp1->packetLength-2] = mp1->interleaveIn[0]; mp1->buffer[mp1->packetLength-1] = mp1->interleaveIn[1]; mp1->calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]); uint8_t syndrome = mp1->calculatedParity ^ mp1->interleaveIn[2]; if (syndrome == 0x00) { // No problems! } else { uint8_t syndromes[2]; syndromes[0] = syndrome & 0x0f; syndromes[1] = (syndrome & 0xf0) >> 4; for (int i = 0; i < 2; i++) { uint8_t s = syndromes[i]; uint8_t correction = 0x00; if (s == 1 || s == 2 || s == 4 || s == 8) { // Error in parity bit, no correction needed continue; } if (s == 3) correction = 0x01; if (s == 5) correction = 0x02; if (s == 6) correction = 0x04; if (s == 7) correction = 0x08; if (s == 9) correction = 0x10; if (s == 10) correction = 0x20; if (s == 11) correction = 0x40; if (s == 12) correction = 0x80; mp1->buffer[mp1->packetLength-(2-i)] ^= correction; if (s != 0) mp1->correctionsMade += 1; } } mp1->checksum_in ^= mp1->buffer[mp1->packetLength-2]; mp1->checksum_in ^= mp1->buffer[mp1->packetLength-1]; //mp1->checksum_in ^= mp1->interleaveIn[2]; continue; } } // FIXME: Describe error correction ////////// if (!mp1->escape && byte == HDLC_FLAG) { // We are not in an escape sequence and we // found a HDLC_FLAG. This can mean two things: if (mp1->packetLength >= MP1_MIN_FRAME_LENGTH) { // We already have more data than the minimum // frame length, which means the flag signifies // the end of the packet. Pass control to the // decoder. if ((mp1->checksum_in & 0xff) == 0x00) { if (SERIAL_DEBUG) kprintf("[CHK-OK] [C=%d] ", mp1->correctionsMade); mp1Decode(mp1); } else { // Checksum was incorrect, we don't do anything, // but you can enable the decode anyway, if you // need it for testing or debugging if (PASSALL) { if (SERIAL_DEBUG) kprintf("[CHK-ER] [C=%d] ", mp1->correctionsMade); mp1Decode(mp1); } } } // If the above is not the case, this must be the // beginning of a frame mp1->reading = true; mp1->packetLength = 0; mp1->readLength = 0; mp1->checksum_in = MP1_CHECKSUM_INIT; mp1->correctionsMade = 0; // We have indicated that we are reading, // and reset the length counter. Now we'll // continue to the next byte. continue; } if (!mp1->escape && byte == HDLC_RESET) { // Not good, we got a reset. The transmitting // party may have encountered an error. We'll // stop receiving this packet immediately. mp1->reading = false; continue; } // This should be a parity byte if (!mp1->escape && byte == AX25_ESC) { // We found an escape character. We'll set // the escape seqeunce indicator so we don't // interpret the next byte as a reset or flag mp1->escape = true; continue; } // Now let's get to the actual reading of the data if (mp1->reading) { if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) { // If the length of the current incoming frame is // still less than our max length, put the incoming // byte in the buffer. // mp1->checksum_in = mp1->checksum_in ^ byte; mp1->buffer[mp1->packetLength++] = byte; } else { // If not, we have a problem: The buffer has overrun // We need to stop receiving, and the packet will be // dropped :( mp1->reading = false; } } // We need to set the escape sequence indicator back // to false after each byte. mp1->escape = false; } if (kfile_error(mp1->modem)) { // If there was an error from the modem, we'll be rude // and just reset it. No error handling is done for now. kfile_clearerr(mp1->modem); } } // This is called to actually send the bytes // after they have been interleaved static void mp1WriteByte(MP1 *mp1, uint8_t byte) { // If we are sending something that looks // like an HDLC special byte, send an escape // character first if (byte == HDLC_FLAG || byte == HDLC_RESET || byte == AX25_ESC) { kfile_putc(AX25_ESC, mp1->modem); } kfile_putc(byte, mp1->modem); } /////////////////////////////// // Interleave-table // /////////////////////////////// // // Non-interleaved: // aaaaaaaa bbbbbbbb cccccccc // 12345678 12345678 12345678 // M L // S S // B B // // Interleaved: // abcabcab cabcabca bcabcabc // 11144477 22255578 63336688 // // // 3bit burst error patterns: // X||||||| X||||||| X||||||| // |||X|||| X||||||| X||||||| // |||X|||| |||X|||| X||||||| // |||X|||| |||X|||| |||X|||| // ||||||X| |||X|||| |||X|||| // ||||||X| ||||||X| |||X|||| // ||||||X| ||||||X| |X|||||| // |X|||||| ||||||X| |X|||||| // |X|||||| |X|||||| |X|||||| // |X|||||| |X|||||| ||||X||| // ||||X||| |X|||||| ||||X||| // ||||X||| ||||X||| ||||X||| // ||||X||| ||||X||| ||||||X| // |||||||X ||||X||| ||||||X| // |||||||X |||||X|| ||||||X| // |||||||X |||||X|| ||X||||| // ||X||||| |||||X|| ||X||||| // ||X||||| ||X||||| ||X||||| // ||X||||| ||X||||| |||||X|| // |||||X|| ||X||||| |||||X|| // |||||X|| |||||||X |||||X|| // |||||X|| |||||||X |||||||X // /////////////////////////////// static void mp1Interleave(MP1 *mp1, uint8_t byte) { mp1->interleaveOut[mp1->interleaveCounter] = byte; mp1->interleaveCounter++; if (mp1->interleaveCounter == 3) { // We have three bytes in the buffer and // are ready to interleave them. uint8_t a = (GET_BIT(mp1->interleaveOut[0], 1) << 7) + (GET_BIT(mp1->interleaveOut[1], 1) << 6) + (GET_BIT(mp1->interleaveOut[2], 1) << 5) + (GET_BIT(mp1->interleaveOut[0], 4) << 4) + (GET_BIT(mp1->interleaveOut[1], 4) << 3) + (GET_BIT(mp1->interleaveOut[2], 4) << 2) + (GET_BIT(mp1->interleaveOut[0], 7) << 1) + (GET_BIT(mp1->interleaveOut[1], 7)); mp1WriteByte(mp1, a); uint8_t b = (GET_BIT(mp1->interleaveOut[2], 2) << 7) + (GET_BIT(mp1->interleaveOut[0], 2) << 6) + (GET_BIT(mp1->interleaveOut[1], 2) << 5) + (GET_BIT(mp1->interleaveOut[2], 5) << 4) + (GET_BIT(mp1->interleaveOut[0], 5) << 3) + (GET_BIT(mp1->interleaveOut[1], 5) << 2) + (GET_BIT(mp1->interleaveOut[2], 7) << 1) + (GET_BIT(mp1->interleaveOut[0], 8)); mp1WriteByte(mp1, b); uint8_t c = (GET_BIT(mp1->interleaveOut[1], 6) << 7) + (GET_BIT(mp1->interleaveOut[2], 3) << 6) + (GET_BIT(mp1->interleaveOut[0], 3) << 5) + (GET_BIT(mp1->interleaveOut[1], 3) << 4) + (GET_BIT(mp1->interleaveOut[2], 6) << 3) + (GET_BIT(mp1->interleaveOut[0], 6) << 2) + (GET_BIT(mp1->interleaveOut[1], 8) << 1) + (GET_BIT(mp1->interleaveOut[2], 8)); mp1WriteByte(mp1, c); // mp1WriteByte(mp1, a); // mp1WriteByte(mp1, b); // mp1WriteByte(mp1, c); mp1->interleaveCounter = 0; } } // FIXME: Desribe additions here static void mp1Putbyte(MP1 *mp1, uint8_t byte) { //kfile_putc(byte, mp1->modem); mp1Interleave(mp1, byte); if (sendParityBlock) { uint8_t p = mp1ParityBlock(lastByte, byte); //kfile_putc(p, mp1->modem); mp1Interleave(mp1, p); } lastByte = byte; sendParityBlock ^= true; } void mp1Send(MP1 *mp1, const void *_buffer, size_t length) { // Get the transmit data buffer const uint8_t *buffer = (const uint8_t *)_buffer; // Initialize checksum mp1->checksum_out = MP1_CHECKSUM_INIT; mp1->interleaveCounter = 0; // FIXME: // Transmit the HDLC_FLAG to signify start of TX kfile_putc(HDLC_FLAG, mp1->modem); bool packetCompression = false; size_t compressedSize = compress(buffer, length); if (compressedSize != 0 && compressedSize < length) { // Compression saved us some space, we'll // send the paket compressed packetCompression = true; memcpy(buffer, compressionBuffer, compressedSize); length = compressedSize; } else { // We are not going to use compression } // Write header and possibly padding // Remember we also write a header and // a checksum. This ensures that we will // always end our packet with a checksum // and a parity byte. uint8_t header = 0xf0; if (packetCompression) header ^= MP1_HEADER_COMPRESSION; if (length % 2 != 0) { header ^= MP1_HEADER_PADDED; mp1->checksum_out = mp1->checksum_out ^ header; mp1Putbyte(mp1, header); mp1->checksum_out = mp1->checksum_out ^ MP1_PADDING; mp1Putbyte(mp1, MP1_PADDING); } else { mp1->checksum_out = mp1->checksum_out ^ header; mp1Putbyte(mp1, header); } // Continously increment the pointer address // of the buffer while passing it to the byte // output function while (length--) { mp1->checksum_out = mp1->checksum_out ^ *buffer; mp1Putbyte(mp1, *buffer++); } // Write checksum to end of packet mp1Putbyte(mp1, mp1->checksum_out); // Transmit a HDLC_FLAG to signify end of TX kfile_putc(HDLC_FLAG, mp1->modem); } void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) { // Allocate memory for our protocol "object" memset(mp1, 0, sizeof(*mp1)); // Set references to our modem "object" and // a callback for when a packet has been decoded mp1->modem = modem; mp1->callback = callback; } int freeRam(void) { extern int __heap_start, *__brkval; int v; return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval); } size_t compress(uint8_t *input, size_t length) { heatshrink_encoder *hse = heatshrink_encoder_alloc(8, 4); if (hse == NULL) { return 0; } size_t written = 0; size_t sunk = 0; heatshrink_encoder_sink(hse, input, length, &sunk); int status = heatshrink_encoder_finish(hse); if (sunk < length) { heatshrink_encoder_free(hse); return 0; } else { if (status == HSER_FINISH_MORE) { heatshrink_encoder_poll(hse, compressionBuffer, MP1_MAX_FRAME_LENGTH, &written); } } heatshrink_encoder_free(hse); return written; } size_t decompress(uint8_t *input, size_t length) { heatshrink_decoder *hsd = heatshrink_decoder_alloc(MP1_MAX_FRAME_LENGTH, 8, 4); if (hsd == NULL) { return 0; } size_t written = 0; size_t sunk = 0; heatshrink_decoder_sink(hsd, input, length, &sunk); int status = heatshrink_decoder_finish(hsd); if (sunk < length) { heatshrink_decoder_free(hsd); return 0; } else { if (status == HSER_FINISH_MORE) { heatshrink_decoder_poll(hsd, compressionBuffer, MP1_MAX_FRAME_LENGTH, &written); } } heatshrink_decoder_free(hsd); return written; }