#include "mp1.h" #include "hardware.h" #include #include static uint8_t lastByte = 0x00; static bool sendParityBlock = false; INLINE bool BIT(uint8_t byte, int n) { return (byte & BV(n)); } static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) { uint8_t parity = 0x00; parity ^= (BIT(first, 1) ^ BIT(first, 2) ^ BIT(first, 4) ^ BIT(first, 5) ^ BIT(first, 7)) << 7; parity ^= (BIT(first, 1) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 6) ^ BIT(first, 7)) << 6; parity ^= (BIT(first, 2) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 8)) << 5; parity ^= (BIT(first, 5) ^ BIT(first, 6) ^ BIT(first, 7) ^ BIT(first, 8)) << 4; parity ^= BIT(other, 1) ^ BIT(other, 2) ^ BIT(other, 4) ^ BIT(other, 5) ^ BIT(other, 7) << 3; parity ^= BIT(other, 1) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 6) ^ BIT(other, 7) << 2; parity ^= BIT(other, 2) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 8) << 1; parity ^= BIT(other, 5) ^ BIT(other, 6) ^ BIT(other, 7) ^ BIT(other, 8); return parity; } static void mp1Decode(MP1 *mp1) { // This decode function is basic and bare minimum. // It does nothing more than extract the data // payload from the buffer and put it into a struct // for further processing. MP1Packet packet; // A decoded packet struct uint8_t *buffer = mp1->buffer; // Get the buffer from the protocol context // Set the payload length of the packet to the counted // length minus 1, so we remove the checksum packet.dataLength = mp1->packetLength - 1; packet.data = buffer; // If a callback have been specified, let's // call it and pass the decoded packet if (mp1->callback) mp1->callback(&packet); } //////////////////////////////////////////////////////////// // The Poll function reads data from the modem, handles // // frame recognition and passes data on to higher layers // // if valid packets are found // //////////////////////////////////////////////////////////// void mp1Poll(MP1 *mp1) { int byte; // A place to store our read byte // Read bytes from the modem until we reach EOF while ((byte = kfile_getc(mp1->modem)) != EOF) { // We have a byte, increment our read counter mp1->readLength++; if (mp1->readLength % 3 != 0) { // This is not a parity byte if (!mp1->escape && byte == HDLC_FLAG) { // We are not in an escape sequence and we // found a HDLC_FLAG. This can mean two things: if (mp1->packetLength >= MP1_MIN_FRAME_LENGTH) { // We already have more data than the minimum // frame length, which means the flag signifies // the end of the packet. Pass control to the // decoder. if ((mp1->checksum_in & 0xff) == 0x00) { mp1Decode(mp1); } else { // Checksum was incorrect, we don't do anything, // but you can enable the decode anyway, if you // need it for testing or debugging // mp1Decode(mp1); } } // If the above is not the case, this must be the // beginning of a frame mp1->reading = true; mp1->packetLength = 0; mp1->readLength = 0; mp1->checksum_in = MP1_CHECKSUM_INIT; // We have indicated that we are reading, // and reset the length counter. Now we'll // continue to the next byte. continue; } if (!mp1->escape && byte == HDLC_RESET) { // Not good, we got a reset. The transmitting // party may have encountered an error. We'll // stop receiving this packet immediately. mp1->reading = false; continue; } // This should be a parity byte if (mp1->readLength % 3 == 0) { uint8_t calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]); if (byte == calculatedParity) { // Parity match, block is correct } else { // Parity differ, transmission error ocurred kprintf("Parity mismatch"); } mp1->readLength = 0; } if (!mp1->escape && byte == AX25_ESC) { // We found an escape character. We'll set // the escape seqeunce indicator so we don't // interpret the next byte as a reset or flag mp1->escape = true; continue; } // Now let's get to the actual reading of the data if (mp1->reading) { if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) { // If the length of the current incoming frame is // still less than our max length, put the incoming // byte in the buffer. if (!mp1->escape) mp1->checksum_in = mp1->checksum_in ^ byte; mp1->buffer[mp1->packetLength++] = byte; } else { // If not, we have a problem: The buffer has overrun // We need to stop receiving, and the packet will be // dropped :( mp1->reading = false; } } // We need to set the escape sequence indicator back // to false after each byte. mp1->escape = false; } else { } } if (kfile_error(mp1->modem)) { // If there was an error from the modem, we'll be rude // and just reset it. No error handling is done for now. kfile_clearerr(mp1->modem); } } static void mp1Putbyte(MP1 *mp1, uint8_t byte) { // If we are sending something that looks // like an HDLC special byte, send an escape // character first if (byte == HDLC_FLAG || byte == HDLC_RESET || byte == AX25_ESC) { kfile_putc(AX25_ESC, mp1->modem); lastByte = AX25_ESC; sendParityBlock ^= true; } kfile_putc(byte, mp1->modem); if (sendParityBlock) { kfile_putc(mp1ParityBlock(lastByte, byte), mp1->modem); } lastByte = byte; sendParityBlock ^= true; } void mp1Send(MP1 *mp1, const void *_buffer, size_t length) { // Get the transmit data buffer const uint8_t *buffer = (const uint8_t *)_buffer; // Initialize checksum mp1->checksum_out = MP1_CHECKSUM_INIT; // Transmit the HDLC_FLAG to signify start of TX kfile_putc(HDLC_FLAG, mp1->modem); // Continously increment the pointer address // of the buffer while passing it to the byte // output function while (length--) { mp1->checksum_out = mp1->checksum_out ^ *buffer; mp1Putbyte(mp1, *buffer++); } // Write checksum to end of packet mp1Putbyte(mp1, mp1->checksum_out); // Transmit a HDLC_FLAG to signify end of TX kfile_putc(HDLC_FLAG, mp1->modem); } void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) { // Allocate memory for our protocol "object" memset(mp1, 0, sizeof(*mp1)); // Set references to our modem "object" and // a callback for when a packet has been decoded mp1->modem = modem; mp1->callback = callback; }