////////////////////////////////////////////////////// // First things first, all the includes we need // ////////////////////////////////////////////////////// #include // Interrupt functionality from BertOS #include // Serial driver from BertOS #include // Timer driver from BertOS #include // Standard input/output #include // String operations #include "afsk.h" // Header for AFSK modem #include "protocol/mp1.h" // Header for MP.1 protocol #if SERIAL_DEBUG #include "cfg/debug.h" // Debug configuration from BertOS #endif ////////////////////////////////////////////////////// // A few definitions // ////////////////////////////////////////////////////// static Afsk afsk; // Declare a AFSK modem struct static MP1 mp1; // Declare a protocol struct static Serial ser; // Declare a serial interface struct #define ADC_CH 0 // Define which channel (pin) we want // for the ADC (this is A0 on arduino) static uint8_t serialBuffer[MP1_MAX_DATA_SIZE]; // This is a buffer for incoming serial data static int sbyte; // For holding byte read from serial port static size_t serialLen = 0; // Counter for counting length of data from serial static bool sertx = false; // Flag signifying whether it's time to send data // Received on the serial port. #define SER_BUFFER_FULL (serialLen < MP1_MAX_DATA_SIZE-1) ////////////////////////////////////////////////////// // And here comes the actual program :) // ////////////////////////////////////////////////////// // This is a callback we register with the protocol, // so we can process each packet as they are decoded. // Right now it just prints the packet to the serial port. static void mp1Callback(struct MP1Packet *packet) { if (SERIAL_DEBUG) { kfile_printf(&ser.fd, "%.*s\n", packet->dataLength, packet->data); } else { for (unsigned long i = 0; i < packet->dataLength; i++) { kfile_putc(packet->data[i], &ser.fd); } } } // Simple initialization function. static void init(void) { // Enable interrupts IRQ_ENABLE; // Initialize hardware timers timer_init(); // Initialize serial comms on UART0, // which is the hardware serial on arduino ser_init(&ser, SER_UART0); ser_setbaudrate(&ser, 9600); // For some reason BertOS sets the serial // to 7 bit characters by default. We set // it to 8 instead. UCSR0C = _BV(UCSZ01) | _BV(UCSZ00); // Create a modem context afsk_init(&afsk, ADC_CH); // ... and a protocol context with the modem mp1Init(&mp1, &afsk.fd, mp1Callback); // That's all! } int main(void) { // Start by running the main initialization init(); // Record the current tick count for time-keeping ticks_t start = timer_clock(); ticks_t frameQueued = 0; // Go into ye good ol' infinite loop while (1) { // First we instruct the protocol to check for // incoming data mp1Poll(&mp1); // If there was actually some data waiting for us // there, let's se what it tastes like :) if (!sertx && ser_available(&ser)) { // We then read a byte from the serial port. // Notice that we use "_nowait" since we can't // have this blocking execution until a byte // comes in. sbyte = ser_getchar_nowait(&ser); // If SERIAL_DEBUG is specified we'll handle // serial data as direct human input and only // transmit when we get a LF character #if SERIAL_DEBUG // If we have not yet surpassed the maximum frame length // and the byte is not a "transmit" (newline) character, // we should store it for transmission. if ((serialLen < MP1_MAX_DATA_SIZE) && (sbyte != 10)) { // Put the read byte into the buffer; serialBuffer[serialLen] = sbyte; // Increment the read length counter serialLen++; } else { // If one of the above conditions were actually the // case, it means we have to transmit, se we set // transmission flag to true. sertx = true; } #else // Otherwise we assume the modem is running // in automated mode, and we push out data // as it becomes available. We either transmit // immediately when the max frame length has // been reached, or when we get no input for // a certain amount of time. if (serialLen < MP1_MAX_DATA_SIZE-1) { // Put the read byte into the buffer; serialBuffer[serialLen] = sbyte; // Increment the read length counter serialLen++; } else { // If max frame length has been reached // we need to transmit. serialBuffer[serialLen] = sbyte; serialLen++; sertx = true; } start = timer_clock(); #endif } else { if (!SERIAL_DEBUG && serialLen > 0 && timer_clock() - start > ms_to_ticks(TX_MAXWAIT)) { sertx = true; } } // Check whether we should send data in our serial buffer if (sertx) { #if MP1_USE_TX_QUEUE mp1QueueFrame(&mp1, serialBuffer, serialLen); frameQueued = timer_clock(); sertx = false; serialLen = 0; #else // Wait until incoming packets are done if (!mp1CarrierSense(&mp1)) { // And then send the data mp1Send(&mp1, serialBuffer, serialLen); // Reset the transmission flag and length counter sertx = false; serialLen = 0; } #endif } #if MP1_USE_TX_QUEUE // We first wait a little to see if more // frames are coming in. if (timer_clock() - frameQueued > ms_to_ticks(MP1_QUEUE_TX_WAIT)) { if (!ser_available(&ser) && !mp1CarrierSense(&mp1)) { // And if not, we send process the frame // queue if possible. mp1ProcessQueue(&mp1); } } #endif } return 0; }