/** * \file * * * \brief Simple cooperative and preemptive multitasking scheduler. * * \author Bernie Innocenti * \author Stefano Fedrigo * \author Andrea Righi */ #include "proc_p.h" #include "proc.h" #include "cfg/cfg_proc.h" #define LOG_LEVEL KERN_LOG_LEVEL #define LOG_FORMAT KERN_LOG_FORMAT #include #include "cfg/cfg_monitor.h" #include // ROUND_UP2 #include #include // CONFIG_DEPEND() #include #include #include #include #if CONFIG_KERN_HEAP #include #endif #include /* memset() */ #define PROC_SIZE_WORDS (ROUND_UP2(sizeof(Process), sizeof(cpu_stack_t)) / sizeof(cpu_stack_t)) /* * The scheduer tracks ready processes by enqueuing them in the * ready list. * * \note Access to the list must occur while interrupts are disabled. */ REGISTER List proc_ready_list; /* * Holds a pointer to the TCB of the currently running process. * * \note User applications should use proc_current() to retrieve this value. */ REGISTER Process *current_process; /** The main process (the one that executes main()). */ static struct Process main_process; #if CONFIG_KERN_HEAP /** * Local heap dedicated to allocate the memory used by the processes. */ static HEAP_DEFINE_BUF(heap_buf, CONFIG_KERN_HEAP_SIZE); static Heap proc_heap; /* * Keep track of zombie processes (processes that are exiting and need to * release some resources). * * \note Access to the list must occur while kernel preemption is disabled. */ static List zombie_list; #endif /* CONFIG_KERN_HEAP */ /* * Check if the process context switch can be performed directly by the * architecture-dependent asm_switch_context() or if it must be delayed * because we're in the middle of an ISR. * * Return true if asm_switch_context() can be executed, false * otherwise. * * NOTE: if an architecture does not implement IRQ_RUNNING() this function * always returns true. */ #define CONTEXT_SWITCH_FROM_ISR() (!IRQ_RUNNING()) /* * Save context of old process and switch to new process. */ static void proc_context_switch(Process *next, Process *prev) { cpu_stack_t *dummy; if (UNLIKELY(next == prev)) return; /* * If there is no old process, we save the old stack pointer into a * dummy variable that we ignore. In fact, this happens only when the * old process has just exited. */ asm_switch_context(&next->stack, prev ? &prev->stack : &dummy); } static void proc_initStruct(Process *proc) { /* Avoid warning for unused argument. */ (void)proc; #if CONFIG_KERN_SIGNALS proc->sig.recv = 0; proc->sig.wait = 0; #endif #if CONFIG_KERN_HEAP proc->flags = 0; #endif #if CONFIG_KERN_PRI proc->link.pri = 0; # if CONFIG_KERN_PRI_INHERIT proc->orig_pri = proc->inh_link.pri = proc->link.pri; proc->inh_blocked_by = NULL; LIST_INIT(&proc->inh_list); # endif #endif } MOD_DEFINE(proc); void proc_init(void) { LIST_INIT(&proc_ready_list); #if CONFIG_KERN_HEAP LIST_INIT(&zombie_list); heap_init(&proc_heap, heap_buf, sizeof(heap_buf)); #endif /* * We "promote" the current context into a real process. The only thing we have * to do is create a PCB and make it current. We don't need to setup the stack * pointer because it will be written the first time we switch to another process. */ proc_initStruct(&main_process); current_process = &main_process; #if CONFIG_KERN_MONITOR monitor_init(); monitor_add(current_process, "main"); #endif MOD_INIT(proc); } #if CONFIG_KERN_HEAP /** * Free all the resources of all zombie processes previously added to the zombie * list. */ static void proc_freeZombies(void) { Process *proc; while (1) { PROC_ATOMIC(proc = (Process *)list_remHead(&zombie_list)); if (proc == NULL) return; if (proc->flags & PF_FREESTACK) { PROC_ATOMIC(heap_freemem(&proc_heap, proc->stack_base, proc->stack_size + PROC_SIZE_WORDS * sizeof(cpu_stack_t))); } } } /** * Enqueue a process in the zombie list. */ static void proc_addZombie(Process *proc) { Node *node; #if CONFIG_KERN_PREEMPT ASSERT(!proc_preemptAllowed()); #endif #if CONFIG_KERN_PRI node = &(proc)->link.link; #else node = &(proc)->link; #endif LIST_ASSERT_VALID(&zombie_list); ADDTAIL(&zombie_list, node); } #endif /* CONFIG_KERN_HEAP */ /** * Create a new process, starting at the provided entry point. * * * \note The function * \code * proc_new(entry, data, stacksize, stack) * \endcode * is a more convenient way to create a process, as you don't have to specify * the name. * * \return Process structure of new created process * if successful, NULL otherwise. */ struct Process *proc_new_with_name(UNUSED_ARG(const char *, name), void (*entry)(void), iptr_t data, size_t stack_size, cpu_stack_t *stack_base) { Process *proc; LOG_INFO("name=%s", name); #if CONFIG_KERN_HEAP bool free_stack = false; /* * Free up resources of a zombie process. * * We're implementing a kind of lazy garbage collector here for * efficiency reasons: we can avoid to introduce overhead into another * kernel task dedicated to free up resources (e.g., idle) and we're * not introducing any overhead into the scheduler after a context * switch (that would be *very* bad, because the scheduler runs with * IRQ disabled). * * In this way we are able to release the memory of the zombie tasks * without disabling IRQs and without introducing any significant * overhead in any other kernel task. */ proc_freeZombies(); /* Did the caller provide a stack for us? */ if (!stack_base) { /* Did the caller specify the desired stack size? */ if (!stack_size) stack_size = KERN_MINSTACKSIZE; /* Allocate stack dinamically */ PROC_ATOMIC(stack_base = (cpu_stack_t *)heap_allocmem(&proc_heap, stack_size)); if (stack_base == NULL) return NULL; free_stack = true; } #else // CONFIG_KERN_HEAP /* Stack must have been provided by the user */ ASSERT2(IS_VALID_PTR(stack_base), "Invalid stack pointer. Did you forget to \ enable CONFIG_KERN_HEAP?"); ASSERT2(stack_size, "Stack size cannot be 0."); #endif // CONFIG_KERN_HEAP #if CONFIG_KERN_MONITOR /* * Fill-in the stack with a special marker to help debugging. * On 64bit platforms, CONFIG_KERN_STACKFILLCODE is larger * than an int, so the (int) cast is required to silence the * warning for truncating its size. */ memset(stack_base, (int)CONFIG_KERN_STACKFILLCODE, stack_size); #endif /* Initialize the process control block */ if (CPU_STACK_GROWS_UPWARD) { proc = (Process *)stack_base; proc->stack = stack_base + PROC_SIZE_WORDS; // On some architecture stack should be aligned, so we do it. proc->stack = (cpu_stack_t *)((uintptr_t)proc->stack + (sizeof(cpu_aligned_stack_t) - ((uintptr_t)proc->stack % sizeof(cpu_aligned_stack_t)))); if (CPU_SP_ON_EMPTY_SLOT) proc->stack++; } else { proc = (Process *)(stack_base + stack_size / sizeof(cpu_stack_t) - PROC_SIZE_WORDS); // On some architecture stack should be aligned, so we do it. proc->stack = (cpu_stack_t *)((uintptr_t)proc - ((uintptr_t)proc % sizeof(cpu_aligned_stack_t))); if (CPU_SP_ON_EMPTY_SLOT) proc->stack--; } /* Ensure stack is aligned */ ASSERT((uintptr_t)proc->stack % sizeof(cpu_aligned_stack_t) == 0); stack_size -= PROC_SIZE_WORDS * sizeof(cpu_stack_t); proc_initStruct(proc); proc->user_data = data; #if CONFIG_KERN_HEAP | CONFIG_KERN_MONITOR proc->stack_base = stack_base; proc->stack_size = stack_size; #if CONFIG_KERN_HEAP if (free_stack) proc->flags |= PF_FREESTACK; #endif #endif proc->user_entry = entry; CPU_CREATE_NEW_STACK(proc->stack); #if CONFIG_KERN_MONITOR monitor_add(proc, name); #endif /* Add to ready list */ ATOMIC(SCHED_ENQUEUE(proc)); return proc; } /** * Return the name of the specified process. * * NULL is a legal argument and will return the name "". */ const char *proc_name(struct Process *proc) { #if CONFIG_KERN_MONITOR return proc ? proc->monitor.name : ""; #else (void)proc; return "---"; #endif } /// Return the name of the currently running process const char *proc_currentName(void) { return proc_name(proc_current()); } /// Rename a process void proc_rename(struct Process *proc, const char *name) { #if CONFIG_KERN_MONITOR monitor_rename(proc, name); #else (void)proc; (void)name; #endif } #if CONFIG_KERN_PRI /** * Change the scheduling priority of a process. * * Process piorities are signed ints, whereas a larger integer value means * higher scheduling priority. The default priority for new processes is 0. * The idle process runs with the lowest possible priority: INT_MIN. * * A process with a higher priority always preempts lower priority processes. * Processes of equal priority share the CPU time according to a simple * round-robin policy. * * As a general rule to maximize responsiveness, compute-bound processes * should be assigned negative priorities and tight, interactive processes * should be assigned positive priorities. * * To avoid interfering with system background activities such as input * processing, application processes should remain within the range -10 * and +10. */ void proc_setPri(struct Process *proc, int pri) { #if CONFIG_KERN_PRI_INHERIT int new_pri; /* * Whatever it will happen below, this is the new * original priority of the process, i.e., the priority * it has without taking inheritance under account. */ proc->orig_pri = pri; /* If not changing anything we can just leave */ if ((new_pri = __prio_proc(proc)) == proc->link.pri) return; /* * Actual process priority is the highest among its * own priority and the one of the top-priority * process that it is blocking (returned by * __prio_proc()). */ proc->link.pri = new_pri; #else if (proc->link.pri == pri) return; proc->link.pri = pri; #endif // CONFIG_KERN_PRI_INHERIT if (proc != current_process) ATOMIC(sched_reenqueue(proc)); } #endif // CONFIG_KERN_PRI INLINE void proc_run(void) { void (*entry)(void) = current_process->user_entry; LOG_INFO("New process starting at %p", entry); entry(); } /** * Entry point for all the processes. */ void proc_entry(void) { /* * Return from a context switch assumes interrupts are disabled, so * we need to explicitly re-enable them as soon as possible. */ IRQ_ENABLE; /* Call the actual process's entry point */ proc_run(); proc_exit(); } /** * Terminate the current process */ void proc_exit(void) { LOG_INFO("%p:%s", current_process, proc_currentName()); #if CONFIG_KERN_MONITOR monitor_remove(current_process); #endif proc_forbid(); #if CONFIG_KERN_HEAP /* * Set the task as zombie, its resources will be freed in proc_new() in * a lazy way, when another process will be created. */ proc_addZombie(current_process); #endif current_process = NULL; proc_permit(); proc_switch(); /* never reached */ ASSERT(0); } /** * Call the scheduler and eventually replace the current running process. */ static void proc_schedule(void) { Process *old_process = current_process; IRQ_ASSERT_DISABLED(); /* Poll on the ready queue for the first ready process */ LIST_ASSERT_VALID(&proc_ready_list); while (!(current_process = (struct Process *)list_remHead(&proc_ready_list))) { /* * Make sure we physically reenable interrupts here, no matter what * the current task status is. This is important because if we * are idle-spinning, we must allow interrupts, otherwise no * process will ever wake up. * * During idle-spinning, an interrupt can occur and it may * modify \p proc_ready_list. To ensure that compiler reload this * variable every while cycle we call CPU_MEMORY_BARRIER. * The memory barrier ensure that all variables used in this context * are reloaded. * \todo If there was a way to write sig_wait() so that it does not * disable interrupts while waiting, there would not be any * reason to do this. */ IRQ_ENABLE; CPU_IDLE; MEMORY_BARRIER; IRQ_DISABLE; } if (CONTEXT_SWITCH_FROM_ISR()) proc_context_switch(current_process, old_process); /* This RET resumes the execution on the new process */ LOG_INFO("resuming %p:%s\n", current_process, proc_currentName()); } #if CONFIG_KERN_PREEMPT /* Global preemption nesting counter */ cpu_atomic_t preempt_count; /* * The time sharing interval: when a process is scheduled on a CPU it gets an * amount of CONFIG_KERN_QUANTUM clock ticks. When these ticks expires and * preemption is enabled a new process is selected to run. */ int _proc_quantum; /** * Check if we need to schedule another task */ bool proc_needPreempt(void) { if (UNLIKELY(current_process == NULL)) return false; if (!proc_preemptAllowed()) return false; if (LIST_EMPTY(&proc_ready_list)) return false; return preempt_quantum() ? prio_next() > prio_curr() : prio_next() >= prio_curr(); } /** * Preempt the current task. */ void proc_preempt(void) { IRQ_ASSERT_DISABLED(); ASSERT(current_process); /* Perform the kernel preemption */ LOG_INFO("preempting %p:%s\n", current_process, proc_currentName()); /* We are inside a IRQ context, so ATOMIC is not needed here */ SCHED_ENQUEUE(current_process); preempt_reset_quantum(); proc_schedule(); } #endif /* CONFIG_KERN_PREEMPT */ /* Immediately switch to a particular process */ static void proc_switchTo(Process *proc) { Process *old_process = current_process; SCHED_ENQUEUE(current_process); preempt_reset_quantum(); current_process = proc; proc_context_switch(current_process, old_process); } /** * Give the control of the CPU to another process. * * \note Assume the current process has been already added to a wait queue. * * \warning This should be considered an internal kernel function, even if it * is allowed, usage from application code is strongly discouraged. */ void proc_switch(void) { ASSERT(proc_preemptAllowed()); ATOMIC( preempt_reset_quantum(); proc_schedule(); ); } /** * Immediately wakeup a process, dispatching it to the CPU. */ void proc_wakeup(Process *proc) { ASSERT(proc_preemptAllowed()); ASSERT(current_process); IRQ_ASSERT_DISABLED(); if (prio_proc(proc) >= prio_curr()) proc_switchTo(proc); else SCHED_ENQUEUE_HEAD(proc); } /** * Voluntarily release the CPU. */ void proc_yield(void) { Process *proc; /* * Voluntary preemption while preemption is disabled is considered * illegal, as not very useful in practice. * * ASSERT if it happens. */ ASSERT(proc_preemptAllowed()); IRQ_ASSERT_ENABLED(); IRQ_DISABLE; proc = (struct Process *)list_remHead(&proc_ready_list); if (proc) proc_switchTo(proc); IRQ_ENABLE; }