529 lines
12 KiB
C
529 lines
12 KiB
C
#include "afsk.h"
|
|
#include "config.h"
|
|
#include "hardware.h"
|
|
|
|
#include <drv/timer.h>
|
|
#include <cfg/module.h>
|
|
|
|
#define HDLC_FLAG 0x7E
|
|
#define HDLC_RESET 0x7F
|
|
#define AX25_ESC 0x1B
|
|
|
|
#include <cfg/log.h>
|
|
|
|
#include <cpu/power.h>
|
|
#include <cpu/pgm.h>
|
|
#include <struct/fifobuf.h>
|
|
|
|
#include <string.h> /* memset */
|
|
|
|
#define PHASE_BIT 8
|
|
#define PHASE_INC 1
|
|
|
|
#define PHASE_MAX (SAMPLEPERBIT * PHASE_BIT)
|
|
#define PHASE_THRES (PHASE_MAX / 2) // - PHASE_BIT / 2)
|
|
|
|
// Modulator constants
|
|
#define MARK_FREQ 1200
|
|
#define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
|
|
#define SPACE_FREQ 2200
|
|
#define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
|
|
|
|
//Ensure sample rate is a multiple of bit rate
|
|
STATIC_ASSERT(!(CONFIG_AFSK_DAC_SAMPLERATE % BITRATE));
|
|
|
|
#define DAC_SAMPLEPERBIT (CONFIG_AFSK_DAC_SAMPLERATE / BITRATE)
|
|
|
|
/**
|
|
* Sine table for the first quarter of wave.
|
|
* The rest of the wave is computed from this first quarter.
|
|
* This table is used to generate the modulated data.
|
|
*/
|
|
static const uint8_t PROGMEM sin_table[] =
|
|
{
|
|
128, 129, 131, 132, 134, 135, 137, 138, 140, 142, 143, 145, 146, 148, 149, 151,
|
|
152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 167, 169, 170, 172, 173, 175,
|
|
176, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 192, 193, 194, 196, 197,
|
|
198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 217,
|
|
218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
|
|
234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 243, 244, 245,
|
|
245, 246, 246, 247, 248, 248, 249, 249, 250, 250, 250, 251, 251, 252, 252, 252,
|
|
253, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255,
|
|
};
|
|
|
|
#define SIN_LEN 512 ///< Full wave length
|
|
|
|
STATIC_ASSERT(sizeof(sin_table) == SIN_LEN / 4);
|
|
|
|
|
|
/**
|
|
* Given the index, this function computes the correct sine sample
|
|
* based only on the first quarter of wave.
|
|
*/
|
|
INLINE uint8_t sin_sample(uint16_t idx)
|
|
{
|
|
ASSERT(idx < SIN_LEN);
|
|
uint16_t new_idx = idx % (SIN_LEN / 2);
|
|
new_idx = (new_idx >= (SIN_LEN / 4)) ? (SIN_LEN / 2 - new_idx - 1) : new_idx;
|
|
|
|
uint8_t data = pgm_read8(&sin_table[new_idx]);
|
|
|
|
return (idx >= (SIN_LEN / 2)) ? (255 - data) : data;
|
|
}
|
|
|
|
|
|
#define BIT_DIFFER(bitline1, bitline2) (((bitline1) ^ (bitline2)) & 0x01)
|
|
#define EDGE_FOUND(bitline) BIT_DIFFER((bitline), (bitline) >> 1)
|
|
|
|
/**
|
|
* High-Level Data Link Control parsing function.
|
|
* Parse bitstream in order to find characters.
|
|
*
|
|
* \param hdlc HDLC context.
|
|
* \param bit current bit to be parsed.
|
|
* \param fifo FIFO buffer used to push characters.
|
|
*
|
|
* \return true if all is ok, false if the fifo is full.
|
|
*/
|
|
static bool hdlc_parse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo)
|
|
{
|
|
bool ret = true;
|
|
|
|
hdlc->demod_bits <<= 1;
|
|
hdlc->demod_bits |= bit ? 1 : 0;
|
|
|
|
/* HDLC Flag */
|
|
if (hdlc->demod_bits == HDLC_FLAG)
|
|
{
|
|
if (!fifo_isfull(fifo))
|
|
{
|
|
fifo_push(fifo, HDLC_FLAG);
|
|
hdlc->rxstart = true;
|
|
}
|
|
else
|
|
{
|
|
ret = false;
|
|
hdlc->rxstart = false;
|
|
}
|
|
|
|
hdlc->currchar = 0;
|
|
hdlc->bit_idx = 0;
|
|
return ret;
|
|
}
|
|
|
|
/* Reset */
|
|
if ((hdlc->demod_bits & HDLC_RESET) == HDLC_RESET)
|
|
{
|
|
hdlc->rxstart = false;
|
|
return ret;
|
|
}
|
|
|
|
if (!hdlc->rxstart)
|
|
return ret;
|
|
|
|
/* Stuffed bit */
|
|
if ((hdlc->demod_bits & 0x3f) == 0x3e)
|
|
return ret;
|
|
|
|
if (hdlc->demod_bits & 0x01)
|
|
hdlc->currchar |= 0x80;
|
|
|
|
if (++hdlc->bit_idx >= 8)
|
|
{
|
|
if ((hdlc->currchar == HDLC_FLAG
|
|
|| hdlc->currchar == HDLC_RESET
|
|
|| hdlc->currchar == AX25_ESC))
|
|
{
|
|
if (!fifo_isfull(fifo))
|
|
fifo_push(fifo, AX25_ESC);
|
|
else
|
|
{
|
|
hdlc->rxstart = false;
|
|
ret = false;
|
|
}
|
|
}
|
|
|
|
if (!fifo_isfull(fifo))
|
|
fifo_push(fifo, hdlc->currchar);
|
|
else
|
|
{
|
|
hdlc->rxstart = false;
|
|
ret = false;
|
|
}
|
|
|
|
hdlc->currchar = 0;
|
|
hdlc->bit_idx = 0;
|
|
}
|
|
else
|
|
hdlc->currchar >>= 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* ADC ISR callback.
|
|
* This function has to be called by the ADC ISR when a sample of the configured
|
|
* channel is available.
|
|
* \param af Afsk context to operate on.
|
|
* \param curr_sample current sample from the ADC.
|
|
*/
|
|
void afsk_adc_isr(Afsk *af, int8_t curr_sample)
|
|
{
|
|
AFSK_STROBE_ON();
|
|
|
|
/*
|
|
* Frequency discriminator and LP IIR filter.
|
|
* This filter is designed to work
|
|
* at the given sample rate and bit rate.
|
|
*/
|
|
STATIC_ASSERT(SAMPLERATE == 9600);
|
|
STATIC_ASSERT(BITRATE == 1200);
|
|
|
|
/*
|
|
* Frequency discrimination is achieved by simply multiplying
|
|
* the sample with a delayed sample of (samples per bit) / 2.
|
|
* Then the signal is lowpass filtered with a first order,
|
|
* 600 Hz filter. The filter implementation is selectable
|
|
* through the CONFIG_AFSK_FILTER config variable.
|
|
*/
|
|
|
|
af->iir_x[0] = af->iir_x[1];
|
|
|
|
#if (CONFIG_AFSK_FILTER == AFSK_BUTTERWORTH)
|
|
af->iir_x[1] = ((int8_t)fifo_pop(&af->delay_fifo) * curr_sample) >> 2;
|
|
//af->iir_x[1] = ((int8_t)fifo_pop(&af->delay_fifo) * curr_sample) / 6.027339492;
|
|
#elif (CONFIG_AFSK_FILTER == AFSK_CHEBYSHEV)
|
|
af->iir_x[1] = ((int8_t)fifo_pop(&af->delay_fifo) * curr_sample) >> 2;
|
|
//af->iir_x[1] = ((int8_t)fifo_pop(&af->delay_fifo) * curr_sample) / 3.558147322;
|
|
#else
|
|
#error Filter type not found!
|
|
#endif
|
|
|
|
af->iir_y[0] = af->iir_y[1];
|
|
|
|
#if CONFIG_AFSK_FILTER == AFSK_BUTTERWORTH
|
|
/*
|
|
* This strange sum + shift is an optimization for af->iir_y[0] * 0.668.
|
|
* iir * 0.668 ~= (iir * 21) / 32 =
|
|
* = (iir * 16) / 32 + (iir * 4) / 32 + iir / 32 =
|
|
* = iir / 2 + iir / 8 + iir / 32 =
|
|
* = iir >> 1 + iir >> 3 + iir >> 5
|
|
*/
|
|
af->iir_y[1] = af->iir_x[0] + af->iir_x[1] + (af->iir_y[0] >> 1) + (af->iir_y[0] >> 3) + (af->iir_y[0] >> 5);
|
|
//af->iir_y[1] = af->iir_x[0] + af->iir_x[1] + af->iir_y[0] * 0.6681786379;
|
|
#elif CONFIG_AFSK_FILTER == AFSK_CHEBYSHEV
|
|
/*
|
|
* This should be (af->iir_y[0] * 0.438) but
|
|
* (af->iir_y[0] >> 1) is a faster approximation :-)
|
|
*/
|
|
af->iir_y[1] = af->iir_x[0] + af->iir_x[1] + (af->iir_y[0] >> 1);
|
|
//af->iir_y[1] = af->iir_x[0] + af->iir_x[1] + af->iir_y[0] * 0.4379097269;
|
|
#endif
|
|
|
|
/* Save this sampled bit in a delay line */
|
|
af->sampled_bits <<= 1;
|
|
af->sampled_bits |= (af->iir_y[1] > 0) ? 1 : 0;
|
|
|
|
/* Store current ADC sample in the af->delay_fifo */
|
|
fifo_push(&af->delay_fifo, curr_sample);
|
|
|
|
/* If there is an edge, adjust phase sampling */
|
|
if (EDGE_FOUND(af->sampled_bits))
|
|
{
|
|
if (af->curr_phase < PHASE_THRES)
|
|
af->curr_phase += PHASE_INC;
|
|
else
|
|
af->curr_phase -= PHASE_INC;
|
|
}
|
|
af->curr_phase += PHASE_BIT;
|
|
|
|
/* sample the bit */
|
|
if (af->curr_phase >= PHASE_MAX)
|
|
{
|
|
af->curr_phase %= PHASE_MAX;
|
|
|
|
/* Shift 1 position in the shift register of the found bits */
|
|
af->found_bits <<= 1;
|
|
|
|
/*
|
|
* Determine bit value by reading the last 3 sampled bits.
|
|
* If the number of ones is two or greater, the bit value is a 1,
|
|
* otherwise is a 0.
|
|
* This algorithm presumes that there are 8 samples per bit.
|
|
*/
|
|
STATIC_ASSERT(SAMPLEPERBIT == 8);
|
|
uint8_t bits = af->sampled_bits & 0x07;
|
|
if (bits == 0x07 // 111, 3 bits set to 1
|
|
|| bits == 0x06 // 110, 2 bits
|
|
|| bits == 0x05 // 101, 2 bits
|
|
|| bits == 0x03 // 011, 2 bits
|
|
)
|
|
af->found_bits |= 1;
|
|
|
|
/*
|
|
* NRZI coding: if 2 consecutive bits have the same value
|
|
* a 1 is received, otherwise it's a 0.
|
|
*/
|
|
if (!hdlc_parse(&af->hdlc, !EDGE_FOUND(af->found_bits), &af->rx_fifo))
|
|
af->status |= AFSK_RXFIFO_OVERRUN;
|
|
}
|
|
|
|
|
|
AFSK_STROBE_OFF();
|
|
}
|
|
|
|
static void afsk_txStart(Afsk *af)
|
|
{
|
|
if (!af->sending)
|
|
{
|
|
af->phase_inc = MARK_INC;
|
|
af->phase_acc = 0;
|
|
af->stuff_cnt = 0;
|
|
af->sending = true;
|
|
af->preamble_len = DIV_ROUND(CONFIG_AFSK_PREAMBLE_LEN * BITRATE, 8000);
|
|
AFSK_DAC_IRQ_START(af->dac_ch);
|
|
}
|
|
ATOMIC(af->trailer_len = DIV_ROUND(CONFIG_AFSK_TRAILER_LEN * BITRATE, 8000));
|
|
}
|
|
|
|
#define BIT_STUFF_LEN 5
|
|
|
|
#define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC)
|
|
|
|
/**
|
|
* DAC ISR callback.
|
|
* This function has to be called by the DAC ISR when a sample of the configured
|
|
* channel has been converted out.
|
|
*
|
|
* \param af Afsk context to operate on.
|
|
*
|
|
* \return The next DAC output sample.
|
|
*/
|
|
uint8_t afsk_dac_isr(Afsk *af)
|
|
{
|
|
AFSK_STROBE_ON();
|
|
|
|
/* Check if we are at a start of a sample cycle */
|
|
if (af->sample_count == 0)
|
|
{
|
|
if (af->tx_bit == 0)
|
|
{
|
|
/* We have just finished transimitting a char, get a new one. */
|
|
if (fifo_isempty(&af->tx_fifo) && af->trailer_len == 0)
|
|
{
|
|
AFSK_DAC_IRQ_STOP(af->dac_ch);
|
|
af->sending = false;
|
|
AFSK_STROBE_OFF();
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If we have just finished sending an unstuffed byte,
|
|
* reset bitstuff counter.
|
|
*/
|
|
if (!af->bit_stuff)
|
|
af->stuff_cnt = 0;
|
|
|
|
af->bit_stuff = true;
|
|
|
|
/*
|
|
* Handle preamble and trailer
|
|
*/
|
|
if (af->preamble_len == 0)
|
|
{
|
|
if (fifo_isempty(&af->tx_fifo))
|
|
{
|
|
af->trailer_len--;
|
|
af->curr_out = HDLC_FLAG;
|
|
}
|
|
else
|
|
af->curr_out = fifo_pop(&af->tx_fifo);
|
|
}
|
|
else
|
|
{
|
|
af->preamble_len--;
|
|
af->curr_out = HDLC_FLAG;
|
|
}
|
|
|
|
/* Handle char escape */
|
|
if (af->curr_out == AX25_ESC)
|
|
{
|
|
if (fifo_isempty(&af->tx_fifo))
|
|
{
|
|
AFSK_DAC_IRQ_STOP(af->dac_ch);
|
|
af->sending = false;
|
|
AFSK_STROBE_OFF();
|
|
return 0;
|
|
}
|
|
else
|
|
af->curr_out = fifo_pop(&af->tx_fifo);
|
|
}
|
|
else if (af->curr_out == HDLC_FLAG || af->curr_out == HDLC_RESET)
|
|
/* If these chars are not escaped disable bit stuffing */
|
|
af->bit_stuff = false;
|
|
}
|
|
/* Start with LSB mask */
|
|
af->tx_bit = 0x01;
|
|
}
|
|
|
|
/* check for bit stuffing */
|
|
if (af->bit_stuff && af->stuff_cnt >= BIT_STUFF_LEN)
|
|
{
|
|
/* If there are more than 5 ones in a row insert a 0 */
|
|
af->stuff_cnt = 0;
|
|
/* switch tone */
|
|
af->phase_inc = SWITCH_TONE(af->phase_inc);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* NRZI: if we want to transmit a 1 the modulated frequency will stay
|
|
* unchanged; with a 0, there will be a change in the tone.
|
|
*/
|
|
if (af->curr_out & af->tx_bit)
|
|
{
|
|
/*
|
|
* Transmit a 1:
|
|
* - Stay on the previous tone
|
|
* - Increase bit stuff counter
|
|
*/
|
|
af->stuff_cnt++;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Transmit a 0:
|
|
* - Reset bit stuff counter
|
|
* - Switch tone
|
|
*/
|
|
af->stuff_cnt = 0;
|
|
af->phase_inc = SWITCH_TONE(af->phase_inc);
|
|
}
|
|
|
|
/* Go to the next bit */
|
|
af->tx_bit <<= 1;
|
|
}
|
|
af->sample_count = DAC_SAMPLEPERBIT;
|
|
}
|
|
|
|
/* Get new sample and put it out on the DAC */
|
|
af->phase_acc += af->phase_inc;
|
|
af->phase_acc %= SIN_LEN;
|
|
|
|
af->sample_count--;
|
|
AFSK_STROBE_OFF();
|
|
return sin_sample(af->phase_acc);
|
|
}
|
|
|
|
|
|
static size_t afsk_read(KFile *fd, void *_buf, size_t size)
|
|
{
|
|
Afsk *af = AFSK_CAST(fd);
|
|
uint8_t *buf = (uint8_t *)_buf;
|
|
|
|
#if CONFIG_AFSK_RXTIMEOUT == 0
|
|
while (size-- && !fifo_isempty_locked(&af->rx_fifo))
|
|
#else
|
|
while (size--)
|
|
#endif
|
|
{
|
|
#if CONFIG_AFSK_RXTIMEOUT != -1
|
|
ticks_t start = timer_clock();
|
|
#endif
|
|
|
|
while (fifo_isempty_locked(&af->rx_fifo))
|
|
{
|
|
cpu_relax();
|
|
#if CONFIG_AFSK_RXTIMEOUT != -1
|
|
if (timer_clock() - start > ms_to_ticks(CONFIG_AFSK_RXTIMEOUT))
|
|
return buf - (uint8_t *)_buf;
|
|
#endif
|
|
}
|
|
|
|
*buf++ = fifo_pop_locked(&af->rx_fifo);
|
|
}
|
|
|
|
return buf - (uint8_t *)_buf;
|
|
}
|
|
|
|
static size_t afsk_write(KFile *fd, const void *_buf, size_t size)
|
|
{
|
|
Afsk *af = AFSK_CAST(fd);
|
|
const uint8_t *buf = (const uint8_t *)_buf;
|
|
|
|
while (size--)
|
|
{
|
|
while (fifo_isfull_locked(&af->tx_fifo))
|
|
cpu_relax();
|
|
|
|
fifo_push_locked(&af->tx_fifo, *buf++);
|
|
afsk_txStart(af);
|
|
}
|
|
|
|
return buf - (const uint8_t *)_buf;
|
|
}
|
|
|
|
static int afsk_flush(KFile *fd)
|
|
{
|
|
Afsk *af = AFSK_CAST(fd);
|
|
while (af->sending)
|
|
cpu_relax();
|
|
return 0;
|
|
}
|
|
|
|
static int afsk_error(KFile *fd)
|
|
{
|
|
Afsk *af = AFSK_CAST(fd);
|
|
int err;
|
|
|
|
ATOMIC(err = af->status);
|
|
return err;
|
|
}
|
|
|
|
static void afsk_clearerr(KFile *fd)
|
|
{
|
|
Afsk *af = AFSK_CAST(fd);
|
|
ATOMIC(af->status = 0);
|
|
}
|
|
|
|
|
|
/**
|
|
* Initialize an AFSK1200 modem.
|
|
* \param af Afsk context to operate on.
|
|
* \param adc_ch ADC channel used by the demodulator.
|
|
* \param dac_ch DAC channel used by the modulator.
|
|
*/
|
|
void afsk_init(Afsk *af, int adc_ch, int dac_ch)
|
|
{
|
|
#if CONFIG_AFSK_RXTIMEOUT != -1
|
|
MOD_CHECK(timer);
|
|
#endif
|
|
memset(af, 0, sizeof(*af));
|
|
af->adc_ch = adc_ch;
|
|
af->dac_ch = dac_ch;
|
|
|
|
fifo_init(&af->delay_fifo, (uint8_t *)af->delay_buf, sizeof(af->delay_buf));
|
|
fifo_init(&af->rx_fifo, af->rx_buf, sizeof(af->rx_buf));
|
|
|
|
/* Fill sample FIFO with 0 */
|
|
for (int i = 0; i < SAMPLEPERBIT / 2; i++)
|
|
fifo_push(&af->delay_fifo, 0);
|
|
|
|
fifo_init(&af->tx_fifo, af->tx_buf, sizeof(af->tx_buf));
|
|
|
|
AFSK_ADC_INIT(adc_ch, af);
|
|
AFSK_DAC_INIT(dac_ch, af);
|
|
AFSK_STROBE_INIT();
|
|
//LOG_INFO("MARK_INC %d, SPACE_INC %d\n", MARK_INC, SPACE_INC);
|
|
|
|
DB(af->fd._type = KFT_AFSK);
|
|
af->fd.write = afsk_write;
|
|
af->fd.read = afsk_read;
|
|
af->fd.flush = afsk_flush;
|
|
af->fd.error = afsk_error;
|
|
af->fd.clearerr = afsk_clearerr;
|
|
af->phase_inc = MARK_INC;
|
|
}
|