MicroAPRS/bertos/drv/thermo.c

328 lines
8.2 KiB
C

/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2005 Develer S.r.l. (http://www.develer.com/)
*
* -->
*
* \brief Thermo-control driver.
*
* The Thermo controll can works both with kernel or without it. In the case
* we use kernel, the thermo controll is done by one process that poll every
* CONFIG_THERMO_INTERVAL_MS the temperature sensor and make all operation to
* follow the target temperature. While we not use the kernel the module works
* with one timer interrupt in the same way of the kenel case.
*
* \author Giovanni Bajo <rasky@develer.com>
* \author Francesco Sacchi <batt@develer.com>
* \author Daniele Basile <asterix@develer.com>
*
*/
#include "hw/thermo_map.h"
#include "hw/hw_thermo.h"
#include "cfg/cfg_thermo.h"
#include <cfg/module.h>
#include <cfg/macros.h>
#include <cfg/debug.h>
// Define logging setting (for cfg/log.h module).
#define LOG_LEVEL CONFIG_THERMO_LOG_LEVEL
#define LOG_VERBOSITY CONFIG_THERMO_LOG_FORMAT
#include <cfg/log.h>
#include <drv/thermo.h>
#include <drv/timer.h>
#include <drv/ntc.h>
#include <kern/proc.h>
#define THERMO_OFF 0
#define THERMO_HEATING BV(0)
#define THERMO_FREEZING BV(1)
#define THERMO_TGT_REACH BV(2)
#define THERMOERRF_NTCSHORT BV(3)
#define THERMOERRF_NTCOPEN BV(4)
#define THERMOERRF_TIMEOUT BV(5)
#define THERMO_ACTIVE BV(6)
#define THERMO_TIMER BV(7)
#define THERMO_ERRMASK (THERMOERRF_NTCSHORT | THERMOERRF_NTCOPEN | THERMOERRF_TIMEOUT)
#if CONFIG_KERN
/** Stack process for Thermo process. */
static PROC_DEFINE_STACK(thermo_poll_stack, 400);
#else
/** Timer for thermo-regulation. */
static Timer thermo_timer;
#endif
typedef struct ThermoControlDev
{
deg_t hifi_samples[CONFIG_THERMO_HIFI_NUM_SAMPLES];
deg_t cur_hifi_sample;
deg_t target;
thermostatus_t status;
ticks_t expire;
ticks_t on_time;
} ThermoControlDev;
/** Array of thermo-devices. */
ThermoControlDev devs[THERMO_CNT];
/**
* Return the status of the specific \a dev thermo-device.
*/
thermostatus_t thermo_status(ThermoDev dev)
{
ASSERT(dev < THERMO_CNT);
return devs[dev].status;
}
/**
* Do a single thermo control for device \a dev.
*/
static void thermo_do(ThermoDev index)
{
ThermoControlDev* dev = &devs[index];
deg_t cur_temp;
deg_t tolerance = thermo_hw_tolerance(index);
cur_temp = thermo_hw_read(index);
// Store the sample into the hifi FIFO buffer for later interpolation
dev->hifi_samples[dev->cur_hifi_sample] = cur_temp;
if (++dev->cur_hifi_sample == CONFIG_THERMO_HIFI_NUM_SAMPLES)
dev->cur_hifi_sample = 0;
cur_temp = thermo_readTemperature(index);
if (cur_temp == NTC_SHORT_CIRCUIT || cur_temp == NTC_OPEN_CIRCUIT)
{
if (cur_temp == NTC_SHORT_CIRCUIT)
{
LOG_INFOB(if (!(dev->status & THERMOERRF_NTCSHORT))
LOG_INFO("dev[%d], thermo_do: NTC_SHORT\n",index););
dev->status |= THERMOERRF_NTCSHORT;
}
else
{
LOG_INFOB(if (!(dev->status & THERMOERRF_NTCOPEN))
LOG_INFO("dev[%d], thermo_do: NTC_OPEN\n", index););
dev->status |= THERMOERRF_NTCOPEN;
}
/* Reset timeout when there is an ntc error */
dev->expire = thermo_hw_timeout(index) + timer_clock();
thermo_hw_off(index);
return;
}
dev->status &= ~(THERMOERRF_NTCOPEN | THERMOERRF_NTCSHORT);
if ((cur_temp < dev->target - tolerance) || (cur_temp > dev->target + tolerance))
{
dev->status &= ~THERMO_TGT_REACH;
/* Check for timeout */
if (timer_clock() - dev->expire > 0)
{
dev->status |= THERMOERRF_TIMEOUT;
LOG_INFO("dev[%d], thermo_do: TIMEOUT\n", index);
}
}
else /* In target */
{
/* Clear errors */
dev->status &= ~THERMO_ERRMASK;
dev->status |= THERMO_TGT_REACH;
/* Reset timeout in case we go out of target in the future */
dev->expire = thermo_hw_timeout(index) + timer_clock();
}
if (cur_temp < dev->target)
dev->status = (dev->status | THERMO_HEATING) & ~THERMO_FREEZING;
else
dev->status = (dev->status & ~THERMO_HEATING) | THERMO_FREEZING;
thermo_hw_set(index, dev->target, cur_temp);
}
static void poll(void)
{
for (int i = 0; i < THERMO_CNT; ++i)
if (devs[i].status & THERMO_ACTIVE)
{
LOG_INFO("THERMO [%d] on_time[%ld],\n", i, ticks_to_ms(devs[i].on_time));
if ((devs[i].status & THERMO_TIMER) && (devs[i].on_time - timer_clock() < 0))
{
thermo_stop(i);
continue;
}
thermo_do((ThermoDev)i);
}
}
#if CONFIG_KERN
static void NORETURN thermo_poll(void)
{
for (;;)
{
poll();
timer_delay(CONFIG_THERMO_INTERVAL_MS);
}
}
#else
/**
* Thermo soft interrupt.
*/
static void thermo_softint(void)
{
poll();
timer_add(&thermo_timer);
}
#endif
/**
* Starts a thermo-regulation for channel \a dev, and turn off timer
* when \a on_time was elapsed.
*/
void thermo_timer(ThermoDev dev, mtime_t on_time)
{
ASSERT(dev < THERMO_CNT);
devs[dev].on_time = timer_clock() + ms_to_ticks(on_time);
devs[dev].status |= THERMO_TIMER;
thermo_start(dev);
}
/**
* Set the target temperature \a temperature for a specific \a dev thermo-device.
*/
void thermo_setTarget(ThermoDev dev, deg_t temperature)
{
ASSERT(dev < THERMO_CNT);
devs[dev].target = temperature;
devs[dev].expire = timer_clock() + thermo_hw_timeout(dev);
LOG_INFO("THERMO Set Target dev[%d], T[%d.%d]\n", dev, temperature / 10, temperature % 10);
}
/**
* Starts a thermo-regulation for channel \a dev.
*/
void thermo_start(ThermoDev dev)
{
int i;
deg_t temp;
ASSERT(dev < THERMO_CNT);
devs[dev].status |= THERMO_ACTIVE;
LOG_INFO("THERMO Start dev[%d], status[%04x]\n", dev, devs[dev].status);
/* Initialize the hifi FIFO with a constant value (the current temperature) */
temp = thermo_hw_read(dev);
for (i = 0; i < CONFIG_THERMO_HIFI_NUM_SAMPLES; ++i)
devs[dev].hifi_samples[i] = temp;
devs[dev].cur_hifi_sample = 0;
/* Reset timeout */
devs[dev].expire = timer_clock() + thermo_hw_timeout(dev);
}
/**
* Stops a thermo-regulation for channel \a dev.
*/
void thermo_stop(ThermoDev dev)
{
ASSERT(dev < THERMO_CNT);
devs[dev].status &= ~THERMO_ACTIVE;
thermo_hw_off(dev);
}
/**
* Clear errors for channel \a dev.
*/
void thermo_clearErrors(ThermoDev dev)
{
ASSERT(dev < THERMO_CNT);
devs[dev].status &= ~(THERMO_ERRMASK);
}
/**
* Read the temperature of the thermo-device \a dev using mobile mean.
*/
deg_t thermo_readTemperature(ThermoDev dev)
{
int i;
long accum = 0;
MOD_CHECK(thermo);
for (i = 0; i < CONFIG_THERMO_HIFI_NUM_SAMPLES; i++)
accum += devs[dev].hifi_samples[i];
return (deg_t)(accum / CONFIG_THERMO_HIFI_NUM_SAMPLES);
}
MOD_DEFINE(thermo)
/**
* Init thermo-control and associated hw.
*/
void thermo_init(void)
{
THERMO_HW_INIT;
/* Set all status to off */
for (int i = 0; i < THERMO_CNT; i++)
devs[i].status = THERMO_OFF;
MOD_INIT(thermo);
#if CONFIG_KERN
proc_new_with_name("Thermo", thermo_poll, NULL, sizeof(thermo_poll_stack), thermo_poll_stack);
#else
timer_setDelay(&thermo_timer, ms_to_ticks(CONFIG_THERMO_INTERVAL_MS));
timer_setSoftint(&thermo_timer, (Hook)thermo_softint, 0);
timer_add(&thermo_timer);
#endif
}