412 lines
8.7 KiB
C
412 lines
8.7 KiB
C
|
/**
|
||
|
* \file
|
||
|
* <!--
|
||
|
* This file is part of BeRTOS.
|
||
|
*
|
||
|
* Bertos is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
* As a special exception, you may use this file as part of a free software
|
||
|
* library without restriction. Specifically, if other files instantiate
|
||
|
* templates or use macros or inline functions from this file, or you compile
|
||
|
* this file and link it with other files to produce an executable, this
|
||
|
* file does not by itself cause the resulting executable to be covered by
|
||
|
* the GNU General Public License. This exception does not however
|
||
|
* invalidate any other reasons why the executable file might be covered by
|
||
|
* the GNU General Public License.
|
||
|
*
|
||
|
* Copyright 2003, 2004, 2005 Develer S.r.l. (http://www.develer.com/)
|
||
|
*
|
||
|
* -->
|
||
|
*
|
||
|
* \brief Driver for the AVR ATMega TWI (implementation)
|
||
|
*
|
||
|
* \author Stefano Fedrigo <aleph@develer.com>
|
||
|
* \author Bernie Innocenti <bernie@codewiz.org>
|
||
|
* \author Daniele Basile <asterix@develer.com>
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include "cfg/cfg_i2c.h"
|
||
|
|
||
|
#include <hw/hw_cpufreq.h> /* CPU_FREQ */
|
||
|
|
||
|
#define LOG_LEVEL I2C_LOG_LEVEL
|
||
|
#define LOG_FORMAT I2C_LOG_FORMAT
|
||
|
|
||
|
#include <cfg/log.h>
|
||
|
|
||
|
#include <cfg/debug.h>
|
||
|
#include <cfg/macros.h> // BV()
|
||
|
#include <cfg/module.h>
|
||
|
|
||
|
#include <cpu/detect.h>
|
||
|
#include <cpu/irq.h>
|
||
|
#include <drv/timer.h>
|
||
|
#include <drv/i2c.h>
|
||
|
|
||
|
#include <cpu/power.h>
|
||
|
|
||
|
#include <compat/twi.h>
|
||
|
|
||
|
#if !CONFIG_I2C_DISABLE_OLD_API
|
||
|
|
||
|
/* Wait for TWINT flag set: bus is ready */
|
||
|
#define WAIT_TWI_READY do {} while (!(TWCR & BV(TWINT)))
|
||
|
|
||
|
/**
|
||
|
* Send START condition on the bus.
|
||
|
*
|
||
|
* \return true on success, false otherwise.
|
||
|
*/
|
||
|
static bool i2c_builtin_start(void)
|
||
|
{
|
||
|
TWCR = BV(TWINT) | BV(TWSTA) | BV(TWEN);
|
||
|
WAIT_TWI_READY;
|
||
|
|
||
|
if (TW_STATUS == TW_START || TW_STATUS == TW_REP_START)
|
||
|
return true;
|
||
|
|
||
|
LOG_ERR("!TW_(REP)START: %x\n", TWSR);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Send START condition and select slave for write.
|
||
|
* \c id is the device id comprehensive of address left shifted by 1.
|
||
|
* The LSB of \c id is ignored and reset to 0 for write operation.
|
||
|
*
|
||
|
* \return true on success, false otherwise.
|
||
|
*/
|
||
|
bool i2c_builtin_start_w(uint8_t id)
|
||
|
{
|
||
|
/*
|
||
|
* Loop on the select write sequence: when the eeprom is busy
|
||
|
* writing previously sent data it will reply to the SLA_W
|
||
|
* control byte with a NACK. In this case, we must
|
||
|
* keep trying until the eeprom responds with an ACK.
|
||
|
*/
|
||
|
ticks_t start = timer_clock();
|
||
|
while (i2c_builtin_start())
|
||
|
{
|
||
|
TWDR = id & ~I2C_READBIT;
|
||
|
TWCR = BV(TWINT) | BV(TWEN);
|
||
|
WAIT_TWI_READY;
|
||
|
|
||
|
if (TW_STATUS == TW_MT_SLA_ACK)
|
||
|
return true;
|
||
|
else if (TW_STATUS != TW_MT_SLA_NACK)
|
||
|
{
|
||
|
LOG_ERR("!TW_MT_SLA_(N)ACK: %x\n", TWSR);
|
||
|
break;
|
||
|
}
|
||
|
else if (timer_clock() - start > ms_to_ticks(CONFIG_I2C_START_TIMEOUT))
|
||
|
{
|
||
|
LOG_ERR("Timeout on TWI_MT_START\n");
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Send START condition and select slave for read.
|
||
|
* \c id is the device id comprehensive of address left shifted by 1.
|
||
|
* The LSB of \c id is ignored and set to 1 for read operation.
|
||
|
*
|
||
|
* \return true on success, false otherwise.
|
||
|
*/
|
||
|
bool i2c_builtin_start_r(uint8_t id)
|
||
|
{
|
||
|
if (i2c_builtin_start())
|
||
|
{
|
||
|
TWDR = id | I2C_READBIT;
|
||
|
TWCR = BV(TWINT) | BV(TWEN);
|
||
|
WAIT_TWI_READY;
|
||
|
|
||
|
if (TW_STATUS == TW_MR_SLA_ACK)
|
||
|
return true;
|
||
|
|
||
|
LOG_ERR("!TW_MR_SLA_ACK: %x\n", TWSR);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Send STOP condition.
|
||
|
*/
|
||
|
void i2c_builtin_stop(void)
|
||
|
{
|
||
|
TWCR = BV(TWINT) | BV(TWEN) | BV(TWSTO);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Put a single byte in master transmitter mode
|
||
|
* to the selected slave device through the TWI bus.
|
||
|
*
|
||
|
* \return true on success, false on error.
|
||
|
*/
|
||
|
bool i2c_builtin_put(const uint8_t data)
|
||
|
{
|
||
|
TWDR = data;
|
||
|
TWCR = BV(TWINT) | BV(TWEN);
|
||
|
WAIT_TWI_READY;
|
||
|
if (TW_STATUS != TW_MT_DATA_ACK)
|
||
|
{
|
||
|
LOG_ERR("!TW_MT_DATA_ACK: %x\n", TWSR);
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get 1 byte from slave in master transmitter mode
|
||
|
* to the selected slave device through the TWI bus.
|
||
|
* If \a ack is true issue a ACK after getting the byte,
|
||
|
* otherwise a NACK is issued.
|
||
|
*
|
||
|
* \return the byte read if ok, EOF on errors.
|
||
|
*/
|
||
|
int i2c_builtin_get(bool ack)
|
||
|
{
|
||
|
TWCR = BV(TWINT) | BV(TWEN) | (ack ? BV(TWEA) : 0);
|
||
|
WAIT_TWI_READY;
|
||
|
|
||
|
if (ack)
|
||
|
{
|
||
|
if (TW_STATUS != TW_MR_DATA_ACK)
|
||
|
{
|
||
|
LOG_ERR("!TW_MR_DATA_ACK: %x\n", TWSR);
|
||
|
return EOF;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (TW_STATUS != TW_MR_DATA_NACK)
|
||
|
{
|
||
|
LOG_ERR("!TW_MR_DATA_NACK: %x\n", TWSR);
|
||
|
return EOF;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* avoid sign extension */
|
||
|
return (int)(uint8_t)TWDR;
|
||
|
}
|
||
|
|
||
|
#endif /* !CONFIG_I2C_DISABLE_OLD_API */
|
||
|
|
||
|
/*
|
||
|
* New Api
|
||
|
*/
|
||
|
struct I2cHardware
|
||
|
{
|
||
|
};
|
||
|
|
||
|
|
||
|
/* Wait for TWINT flag set: bus is ready */
|
||
|
#define WAIT_READY() \
|
||
|
do { \
|
||
|
while (!(TWCR & BV(TWINT))) \
|
||
|
cpu_relax(); \
|
||
|
} while (0)
|
||
|
|
||
|
/**
|
||
|
* Send START condition on the bus.
|
||
|
*/
|
||
|
INLINE bool i2c_hw_start(void)
|
||
|
{
|
||
|
TWCR = BV(TWINT) | BV(TWSTA) | BV(TWEN);
|
||
|
WAIT_READY();
|
||
|
|
||
|
if (TW_STATUS == TW_START || TW_STATUS == TW_REP_START)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Send STOP condition.
|
||
|
*/
|
||
|
INLINE void i2c_hw_stop(void)
|
||
|
{
|
||
|
TWCR = BV(TWINT) | BV(TWEN) | BV(TWSTO);
|
||
|
}
|
||
|
|
||
|
static void i2c_avr_start(I2c *i2c, uint16_t slave_addr)
|
||
|
{
|
||
|
/*
|
||
|
* Loop on the select write sequence: when the eeprom is busy
|
||
|
* writing previously sent data it will reply to the SLA_W
|
||
|
* control byte with a NACK. In this case, we must
|
||
|
* keep trying until the slave responds with an ACK.
|
||
|
*/
|
||
|
ticks_t start = timer_clock();
|
||
|
while (i2c_hw_start())
|
||
|
{
|
||
|
uint8_t sla_ack = 0;
|
||
|
uint8_t sla_nack = 0;
|
||
|
if (I2C_TEST_START(i2c->flags) == I2C_START_W)
|
||
|
{
|
||
|
TWDR = slave_addr & ~I2C_READBIT;
|
||
|
sla_ack = TW_MT_SLA_ACK;
|
||
|
sla_nack = TW_MT_SLA_NACK;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
TWDR = slave_addr | I2C_READBIT;
|
||
|
sla_ack = TW_MR_SLA_ACK;
|
||
|
sla_nack = TW_MR_SLA_NACK;
|
||
|
}
|
||
|
|
||
|
TWCR = BV(TWINT) | BV(TWEN);
|
||
|
WAIT_READY();
|
||
|
|
||
|
if (TW_STATUS == sla_ack)
|
||
|
return;
|
||
|
else if (TW_STATUS != sla_nack)
|
||
|
{
|
||
|
LOG_ERR("Start addr NACK[%x]\n", TWSR);
|
||
|
i2c->errors |= I2C_NO_ACK;
|
||
|
i2c_hw_stop();
|
||
|
break;
|
||
|
}
|
||
|
else if (timer_clock() - start > ms_to_ticks(CONFIG_I2C_START_TIMEOUT))
|
||
|
{
|
||
|
LOG_ERR("Start timeout\n");
|
||
|
i2c->errors |= I2C_START_TIMEOUT;
|
||
|
i2c_hw_stop();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
LOG_ERR("I2c error\n");
|
||
|
i2c->errors |= I2C_ERR;
|
||
|
i2c_hw_stop();
|
||
|
}
|
||
|
|
||
|
static void i2c_avr_putc(I2c *i2c, const uint8_t data)
|
||
|
{
|
||
|
|
||
|
TWDR = data;
|
||
|
TWCR = BV(TWINT) | BV(TWEN);
|
||
|
WAIT_READY();
|
||
|
|
||
|
if (TW_STATUS != TW_MT_DATA_ACK)
|
||
|
{
|
||
|
LOG_ERR("Data nack[%x]\n", TWSR);
|
||
|
i2c->errors |= I2C_DATA_NACK;
|
||
|
i2c_hw_stop();
|
||
|
}
|
||
|
|
||
|
if ((i2c->xfer_size == 1) && (I2C_TEST_STOP(i2c->flags) == I2C_STOP))
|
||
|
i2c_hw_stop();
|
||
|
}
|
||
|
|
||
|
static uint8_t i2c_avr_getc(I2c *i2c)
|
||
|
{
|
||
|
uint8_t data_flag = 0;
|
||
|
if (i2c->xfer_size == 1)
|
||
|
{
|
||
|
TWCR = BV(TWINT) | BV(TWEN);
|
||
|
data_flag = TW_MR_DATA_NACK;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
TWCR = BV(TWINT) | BV(TWEN) | BV(TWEA);
|
||
|
data_flag = TW_MR_DATA_ACK;
|
||
|
}
|
||
|
|
||
|
WAIT_READY();
|
||
|
|
||
|
if (TW_STATUS != data_flag)
|
||
|
{
|
||
|
LOG_ERR("Data nack[%x]\n", TWSR);
|
||
|
i2c->errors |= I2C_DATA_NACK;
|
||
|
i2c_hw_stop();
|
||
|
|
||
|
return 0xFF;
|
||
|
}
|
||
|
|
||
|
uint8_t data = TWDR;
|
||
|
|
||
|
if ((i2c->xfer_size == 1) && (I2C_TEST_STOP(i2c->flags) == I2C_STOP))
|
||
|
i2c_hw_stop();
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
|
||
|
static const I2cVT i2c_avr_vt =
|
||
|
{
|
||
|
.start = i2c_avr_start,
|
||
|
.getc = i2c_avr_getc,
|
||
|
.putc = i2c_avr_putc,
|
||
|
.write = i2c_genericWrite,
|
||
|
.read = i2c_genericRead,
|
||
|
};
|
||
|
|
||
|
struct I2cHardware i2c_avr_hw[] =
|
||
|
{
|
||
|
{ /* I2C0 */
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Initialize I2C module.
|
||
|
*/
|
||
|
void i2c_hw_init(I2c *i2c, int dev, uint32_t clock)
|
||
|
{
|
||
|
i2c->hw = &i2c_avr_hw[dev];
|
||
|
i2c->vt = &i2c_avr_vt;
|
||
|
|
||
|
ATOMIC(
|
||
|
/*
|
||
|
* This is pretty useless according to AVR's datasheet,
|
||
|
* but it helps us driving the TWI data lines on boards
|
||
|
* where the bus pull-up resistors are missing. This is
|
||
|
* probably due to some unwanted interaction between the
|
||
|
* port pin and the TWI lines.
|
||
|
*/
|
||
|
#if CPU_AVR_ATMEGA64 || CPU_AVR_ATMEGA128 || CPU_AVR_ATMEGA1281 || CPU_AVR_ATMEGA1280 || CPU_AVR_ATMEGA2560
|
||
|
PORTD |= BV(PD0) | BV(PD1);
|
||
|
DDRD |= BV(PD0) | BV(PD1);
|
||
|
#elif CPU_AVR_ATMEGA8
|
||
|
PORTC |= BV(PC4) | BV(PC5);
|
||
|
DDRC |= BV(PC4) | BV(PC5);
|
||
|
#elif CPU_AVR_ATMEGA32
|
||
|
PORTC |= BV(PC1) | BV(PC0);
|
||
|
DDRC |= BV(PC1) | BV(PC0);
|
||
|
#else
|
||
|
#error Unsupported architecture
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Set speed:
|
||
|
* F = CPU_FREQ / (16 + 2*TWBR * 4^TWPS)
|
||
|
*/
|
||
|
ASSERT(clock);
|
||
|
#define TWI_PRESC 1 /* 4 ^ TWPS */
|
||
|
|
||
|
TWBR = (CPU_FREQ / (2 * clock * TWI_PRESC)) - (8 / TWI_PRESC);
|
||
|
TWSR = 0;
|
||
|
TWCR = BV(TWEN);
|
||
|
);
|
||
|
}
|