OpenModem/bertos/struct/list.h

411 lines
10 KiB
C
Raw Normal View History

2014-04-03 14:21:37 -06:00
/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2003, 2004 Develer S.r.l. (http://www.develer.com/)
* Copyright 2001, 2008 Bernie Innocenti <bernie@codewiz.org>
* -->
*
* \defgroup list General purpose lists
* \ingroup struct
* \{
*
* \brief General pourpose double-linked lists
*
* Lists contain nodes. You can put any custom struct into any list as long
* as it has a Node struct inside it. If you make the Node struct the first
* member of your data type, you can simply cast it to (Node *) when passing
* it to list functions.
*
* Lists must be initialized before use with LIST_INIT(). You can then add
* objects using ADDHEAD() and ADDTAIL() macros, and remove them with
* list_remHead() and list_remTail().
*
* You can create lists with priorities by using PriNode instead of Node as
* the base member struct.
* Use LIST_ENQUEUE() and LIST_ENQUEUE_HEAD() to insert a priority node into
* a list.
*
* To iterate over a list, use the macros FOREACH_NODE() and REVERSE_FOREACH_NODE()
* in this way:
* \code
* struct Foo
* {
* Node n;
* int a;
* }
*
* int main()
* {
* List foo_list;
* static Foo foo1, foo2;
* Foo *fp;
*
* LIST_INIT(&foo_list);
* ADDHEAD(&foo_list, (Node *)&foo1);
* INSERT_BEFORE(&foo_list, (Node *)&foo2);
* FOREACH_NODE(fp, &foo_list)
* fp->a = 10;
* }
* \endcode
*
* \author Bernie Innocenti <bernie@codewiz.org>
*/
#ifndef STRUCT_LIST_H
#define STRUCT_LIST_H
#include <cfg/compiler.h> /* INLINE */
#include <cfg/debug.h> /* ASSERT_VALID_PTR() */
/**
* This structure represents a node for bidirectional lists.
*
* Data is usually appended to nodes by making them the first
* field of another struture, as a poor-man's form of inheritance.
*/
typedef struct _Node
{
struct _Node *succ;
struct _Node *pred;
} Node;
/**
* Head of a doubly-linked list of \c Node structs.
*
* Lists must be initialized with LIST_INIT() prior to use.
*
* Nodes can be added and removed from either end of the list
* with O(1) performance. Iterating over these lists can be
* tricky: use the FOREACH_NODE() macro instead.
*/
typedef struct _List
{
Node head;
Node tail;
} List;
/**
* Extended node for priority queues.
*/
typedef struct _PriNode
{
Node link;
int pri;
} PriNode;
/**
* Template for a naked node in a list of \a T structures.
*
* To be used as data member in other structures:
*
* \code
* struct Foo
* {
* DECLARE_NODE_ANON(struct Foo)
* int a;
* float b;
* }
*
* DECLARE_LIST_TYPE(Foo);
*
* void foo(void)
* {
* static LIST_TYPE(Foo) foo_list;
* static Foo foo1, foo2;
* Foo *fp;
*
* LIST_INIT(&foo_list);
* ADDHEAD(&foo_list, &foo1);
* INSERT_BEFORE(&foo_list, &foo2);
* FOREACH_NODE(fp, &foo_list)
* fp->a = 10;
* }
*
* \endcode
*/
#define DECLARE_NODE_ANON(T) \
T *succ; T *pred;
/** Declare a typesafe node for structures of type \a T. */
#define DECLARE_NODE_TYPE(T) \
typedef struct T##Node { T *succ; T *pred; } T##Node
/** Template for a list of \a T structures. */
#define DECLARE_LIST_TYPE(T) \
DECLARE_NODE_TYPE(T); \
typedef struct T##List { \
T##Node head; \
T##Node tail; \
} T##List
#define NODE_TYPE(T) T##Node
#define LIST_TYPE(T) T##List
/**
* Get a pointer to the first node in a list.
*
* If \a l is empty, result points to l->tail.
*/
#define LIST_HEAD(l) ((l)->head.succ)
/**
* Get a pointer to the last node in a list.
*
* If \a l is empty, result points to l->head.
*/
#define LIST_TAIL(l) ((l)->tail.pred)
// TODO: move in compiler.h
#if COMPILER_TYPEOF
#define TYPEOF_OR_VOIDPTR(type) typeof(type)
#else
#define TYPEOF_OR_VOIDPTR(type) void *
#endif
/**
* Iterate over all nodes in a list.
*
* This macro generates a "for" statement using the following parameters:
* \param n Node pointer to be used in each iteration.
* \param l Pointer to list.
*/
#define FOREACH_NODE(n, l) \
for( \
(n) = (TYPEOF_OR_VOIDPTR(n))LIST_HEAD(l); \
((Node *)(n))->succ; \
(n) = (TYPEOF_OR_VOIDPTR(n))(((Node *)(n))->succ) \
)
/**
* Iterate backwards over all nodes in a list.
*
* This macro generates a "for" statement using the following parameters:
* \param n Node pointer to be used in each iteration.
* \param l Pointer to list.
*/
#define REVERSE_FOREACH_NODE(n, l) \
for( \
(n) = (TYPEOF_OR_VOIDPTR(n))LIST_TAIL(l); \
((Node *)(n))->pred; \
(n) = (TYPEOF_OR_VOIDPTR(n))(((Node *)(n))->pred) \
)
/**
* Iterate on the list safely against node removal.
*
* This macro generates a "for" statement using the following parameters:
* \param n Node pointer to be used in each iteration.
* \param p Temporal storage for the iterator.
* \param l Pointer to list.
*/
#define FOREACH_NODE_SAFE(n, p, l) \
for( \
(n) = (TYPEOF_OR_VOIDPTR(n))LIST_HEAD(l), (p) = ((Node *)(n))->succ; \
((Node *)(n))->succ; \
(n) = (p), (p) = (TYPEOF_OR_VOIDPTR(n))(((Node *)(n))->succ) \
)
/** Initialize a list. */
#define LIST_INIT(l) \
do { \
(l)->head.succ = (TYPEOF_OR_VOIDPTR((l)->head.succ)) &(l)->tail; \
(l)->head.pred = NULL; \
(l)->tail.succ = NULL; \
(l)->tail.pred = (TYPEOF_OR_VOIDPTR((l)->tail.pred)) &(l)->head; \
} while (0)
#ifdef _DEBUG
/** Make sure that a list is valid (it was initialized and is not corrupted). */
#define LIST_ASSERT_VALID(l) \
do { \
Node *n, *pred; \
ASSERT((l)->head.succ != NULL); \
ASSERT((l)->head.pred == NULL); \
ASSERT((l)->tail.succ == NULL); \
ASSERT((l)->tail.pred != NULL); \
pred = &(l)->head; \
FOREACH_NODE(n, l) \
{ \
ASSERT(n->pred == pred); \
pred = n; \
} \
ASSERT(n == &(l)->tail); \
} while (0)
/// Checks that a node isn't part of a given list
#define LIST_ASSERT_NOT_CONTAINS(list,node) \
do { \
Node *ln; \
ASSERT_VALID_PTR(list); \
ASSERT_VALID_PTR(node); \
FOREACH_NODE(ln, list) \
ASSERT(ln != (Node *)(node)); \
} while (0)
#define INVALIDATE_NODE(n) ((n)->succ = (n)->pred = NULL)
#else
#define LIST_ASSERT_VALID(l) do {} while (0)
#define LIST_ASSERT_NOT_CONTAINS(list,node) do {} while (0)
#define INVALIDATE_NODE(n) do {} while (0)
#endif
/** Tell whether a list is empty. */
#define LIST_EMPTY(l) ( (void *)((l)->head.succ) == (void *)(&(l)->tail) )
/** Add node to list head. */
#define ADDHEAD(l,n) \
do { \
LIST_ASSERT_NOT_CONTAINS((l),(n)); \
(n)->succ = (l)->head.succ; \
(n)->pred = (l)->head.succ->pred; \
(n)->succ->pred = (n); \
(n)->pred->succ = (n); \
} while (0)
/** Add node to list tail. */
#define ADDTAIL(l,n) \
do { \
LIST_ASSERT_NOT_CONTAINS((l),(n)); \
(n)->succ = &(l)->tail; \
(n)->pred = (l)->tail.pred; \
(n)->pred->succ = (n); \
(l)->tail.pred = (n); \
} while (0)
/**
* Insert node \a n before node \a ln.
*
* \note You can't pass in a list header as \a ln, but
* it is safe to pass list-\>head of an empty list.
*/
#define INSERT_BEFORE(n,ln) \
do { \
ASSERT_VALID_PTR(n); \
ASSERT_VALID_PTR(ln); \
(n)->succ = (ln); \
(n)->pred = (ln)->pred; \
(ln)->pred->succ = (n); \
(ln)->pred = (n); \
} while (0)
/**
* Remove \a n from whatever list it is in.
*
* \note Removing a node that has not previously been
* inserted into a list invokes undefined behavior.
*/
#define REMOVE(n) \
do { \
ASSERT_VALID_PTR(n); \
(n)->pred->succ = (n)->succ; \
(n)->succ->pred = (n)->pred; \
INVALIDATE_NODE(n); \
} while (0)
/**
* Insert a priority node in a priority queue.
*
* The new node is inserted immediately before the first node with the same
* priority or appended to the tail if no such node exists.
*/
#define LIST_ENQUEUE_HEAD(list, node) \
do { \
PriNode *ln; \
LIST_ASSERT_NOT_CONTAINS((list),(node)); \
FOREACH_NODE(ln, (list)) \
if (ln->pri <= (node)->pri) \
break; \
INSERT_BEFORE(&(node)->link, &ln->link); \
} while (0)
/**
* Insert a priority node in a priority queue.
*
* The new node is inserted immediately before the first node with lower
* priority or appended to the tail if no such node exists.
*/
#define LIST_ENQUEUE(list, node) \
do { \
PriNode *ln; \
LIST_ASSERT_NOT_CONTAINS((list),(node)); \
FOREACH_NODE(ln, (list)) \
if (ln->pri < (node)->pri) \
break; \
INSERT_BEFORE(&(node)->link, &ln->link); \
} while (0)
/**
* Unlink a node from the head of the list \a l.
*
* \return Pointer to node, or NULL if the list was empty.
*/
INLINE Node *list_remHead(List *l)
{
Node *n;
ASSERT_VALID_PTR(l);
if (LIST_EMPTY(l))
return (Node *)0;
n = l->head.succ; /* Get first node. */
l->head.succ = n->succ; /* Link list head to second node. */
n->succ->pred = &l->head; /* Link second node to list head. */
INVALIDATE_NODE(n);
return n;
}
/**
* Unlink a node from the tail of the list \a l.
*
* \return Pointer to node, or NULL if the list was empty.
*/
INLINE Node *list_remTail(List *l)
{
Node *n;
ASSERT_VALID_PTR(l);
if (LIST_EMPTY(l))
return NULL;
n = l->tail.pred; /* Get last node. */
l->tail.pred = n->pred; /* Link list tail to second last node. */
n->pred->succ = &l->tail; /* Link second last node to list tail. */
INVALIDATE_NODE(n);
return n;
}
/** \} */ //defgroup list
#endif /* STRUCT_LIST_H */