12-byte interleaver

This commit is contained in:
Mark Qvist 2014-04-17 14:25:16 +02:00
parent 35a92e167e
commit 2462188597
4 changed files with 491 additions and 228 deletions

View File

@ -3,8 +3,8 @@
#define FSK_CFG #define FSK_CFG
// Debug & test options // Debug & test options
#define SERIAL_DEBUG false #define SERIAL_DEBUG true
#define PASSALL false #define PASSALL true
#define AUTOREPLY false #define AUTOREPLY false
// Modem options // Modem options
@ -17,7 +17,7 @@
#define CONFIG_AFSK_RXTIMEOUT 0 // How long a read operation from the modem #define CONFIG_AFSK_RXTIMEOUT 0 // How long a read operation from the modem
// will wait for data before timing out. // will wait for data before timing out.
#define CONFIG_AFSK_PREAMBLE_LEN 250UL // The length of the packet preamble in milliseconds #define CONFIG_AFSK_PREAMBLE_LEN 450UL // The length of the packet preamble in milliseconds
#define CONFIG_AFSK_TRAILER_LEN 20UL // The length of the packet tail in milliseconds #define CONFIG_AFSK_TRAILER_LEN 20UL // The length of the packet tail in milliseconds
#endif #endif

View File

@ -68,15 +68,18 @@ static void mp1Decode(MP1 *mp1) {
// If header indicates a padded packet, remove // If header indicates a padded packet, remove
// padding // padding
uint8_t padding = header >> 4;
if (header & MP1_HEADER_PADDED) { if (header & MP1_HEADER_PADDED) {
buffer++; for (int i = 0; i < padding; i++) {
buffer++;
}
} }
if (SERIAL_DEBUG) kprintf("[TS=%d] ", mp1->packetLength); if (SERIAL_DEBUG) kprintf("[TS=%d] ", mp1->packetLength);
// Set the payload length of the packet to the counted // Set the payload length of the packet to the counted
// length minus 1, so we remove the checksum // length minus 1, so we remove the checksum
packet.dataLength = mp1->packetLength - 2 - (header & 0x01); packet.dataLength = mp1->packetLength - 2 - (header & 0x01)*padding;
// Check if we have received a compressed packet // Check if we have received a compressed packet
if (header & MP1_HEADER_COMPRESSION) { if (header & MP1_HEADER_COMPRESSION) {
@ -121,101 +124,128 @@ void mp1Poll(MP1 *mp1) {
// HDLC_FLAG), we will start looking at the // HDLC_FLAG), we will start looking at the
// incoming data and perform forward error // incoming data and perform forward error
// correction on it. // correction on it.
if ((mp1->reading && (byte != AX25_ESC )) || (mp1->reading && (mp1->escape && byte == AX25_ESC))) {
if ((mp1->reading && (byte != AX25_ESC )) || (mp1->reading && (mp1->escape && (byte == AX25_ESC || byte == HDLC_FLAG || byte == HDLC_RESET)))) {
mp1->readLength++; mp1->readLength++;
// Check if we have read three bytes. If we // Check if we have read three bytes. If we
// have, we should now have a block of two // have, we should now have a block of two
// data bytes and a parity byte. This block // data bytes and a parity byte. This block
if (mp1->readLength % 3 == 0) { if (mp1->readLength % MP1_INTERLEAVE_SIZE == 0) {
// If the last character in the block
// looks like a control character, we
// need to set the escape indicator to
// false, since the next byte will be
// read immediately after the FEC
// routine, and thus, the normal reading
// code will not reset the indicator.
if (byte == AX25_ESC || byte == HDLC_FLAG || byte == HDLC_RESET) mp1->escape = false;
// The block is interleaved, so we will // The block is interleaved, so we will
// first put the received bytes in the // first put the received bytes in the
// deinterleaving buffer // deinterleaving buffer
mp1->interleaveIn[0] = mp1->buffer[mp1->packetLength-2]; for (int i = 1; i < MP1_INTERLEAVE_SIZE; i++) {
mp1->interleaveIn[1] = mp1->buffer[mp1->packetLength-1]; mp1->interleaveIn[i-1] = mp1->buffer[mp1->packetLength-(MP1_INTERLEAVE_SIZE-i)];
mp1->interleaveIn[2] = byte; }
mp1->interleaveIn[MP1_INTERLEAVE_SIZE-1] = byte;
// We then deinterleave the block // We then deinterleave the block
mp1Deinterleave(mp1); mp1Deinterleave(mp1);
// And write the deinterleaved data // Adjust the packet length, since we will get
// back into the buffer // parity bytes in the data buffer with block
mp1->buffer[mp1->packetLength-2] = mp1->interleaveIn[0]; // sizes larger than 3
mp1->buffer[mp1->packetLength-1] = mp1->interleaveIn[1]; mp1->packetLength -= MP1_INTERLEAVE_SIZE/3 - 1;
// We now calculate a parity byte on the // For each 3-byte block in the deinterleaved
// received data. // bytes, we apply forward error correction
mp1->calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]); for (int i = 0; i < MP1_INTERLEAVE_SIZE; i+=3) {
// We now calculate a parity byte on the
// received data.
// By XORing the calculated parity byte // Deinterleaved data bytes
// with the received parity byte, we get uint8_t a = mp1->interleaveIn[i];
// what is called the "syndrome". This uint8_t b = mp1->interleaveIn[i+1];
// number will tell us if we had any
// errors during transmission, and if so
// where they are. Using Hamming code, we
// can only detect single bit errors in a
// byte though, which is why we interleave
// the data, since most errors will usually
// occur in bursts of more than one bit.
// With 2 data byte interleaving we can
// correct 2 consecutive bit errors.
uint8_t syndrome = mp1->calculatedParity ^ mp1->interleaveIn[2];
if (syndrome == 0x00) {
// If the syndrome equals 0, we either
// don't have any errors, or the error
// is unrecoverable, so we don't do
// anything
} else {
// If the syndrome is not equal to 0,
// there is a problem, and we will try
// to correct it. We first need to split
// the syndrome byte up into the two
// actual syndrome numbers, one for
// each data byte.
uint8_t syndromes[2];
syndromes[0] = syndrome & 0x0f;
syndromes[1] = (syndrome & 0xf0) >> 4;
// Then we look at each syndrome number // Deinterleaved parity byte
// to determine what bit in the data uint8_t p = mp1->interleaveIn[i+2];
// bytes to correct.
for (int i = 0; i < 2; i++) { mp1->calculatedParity = mp1ParityBlock(a, b);
uint8_t s = syndromes[i];
uint8_t correction = 0x00; // By XORing the calculated parity byte
if (s == 1 || s == 2 || s == 4 || s == 8) { // with the received parity byte, we get
// This signifies an error in the // what is called the "syndrome". This
// parity block, so we actually // number will tell us if we had any
// don't need any correction // errors during transmission, and if so
continue; // where they are. Using Hamming code, we
// can only detect single bit errors in a
// byte though, which is why we interleave
// the data, since most errors will usually
// occur in bursts of more than one bit.
// With 2 data byte interleaving we can
// correct 2 consecutive bit errors.
uint8_t syndrome = mp1->calculatedParity ^ p;
if (syndrome == 0x00) {
// If the syndrome equals 0, we either
// don't have any errors, or the error
// is unrecoverable, so we don't do
// anything
} else {
// If the syndrome is not equal to 0,
// there is a problem, and we will try
// to correct it. We first need to split
// the syndrome byte up into the two
// actual syndrome numbers, one for
// each data byte.
uint8_t syndromes[2];
syndromes[0] = syndrome & 0x0f;
syndromes[1] = (syndrome & 0xf0) >> 4;
// Then we look at each syndrome number
// to determine what bit in the data
// bytes to correct.
for (int i = 0; i < 2; i++) {
uint8_t s = syndromes[i];
uint8_t correction = 0x00;
if (s == 1 || s == 2 || s == 4 || s == 8) {
// This signifies an error in the
// parity block, so we actually
// don't need any correction
continue;
}
// The following determines what
// bit to correct according to
// the syndrome value.
if (s == 3) correction = 0x01;
if (s == 5) correction = 0x02;
if (s == 6) correction = 0x04;
if (s == 7) correction = 0x08;
if (s == 9) correction = 0x10;
if (s == 10) correction = 0x20;
if (s == 11) correction = 0x40;
if (s == 12) correction = 0x80;
// And finally we apply the correction
if (i == 1) a ^= correction;
if (i == 0) b ^= correction;
// This is just for testing purposes.
// Nice to know when corrections were
// actually made.
if (s != 0) mp1->correctionsMade += 1;
} }
// The following determines what
// bit to correct according to
// the syndrome value.
if (s == 3) correction = 0x01;
if (s == 5) correction = 0x02;
if (s == 6) correction = 0x04;
if (s == 7) correction = 0x08;
if (s == 9) correction = 0x10;
if (s == 10) correction = 0x20;
if (s == 11) correction = 0x40;
if (s == 12) correction = 0x80;
// And finally we apply the correction
mp1->buffer[mp1->packetLength-(2-i)] ^= correction;
// This is just for testing purposes.
// Nice to know when corrections were
// actually made.
if (s != 0) mp1->correctionsMade += 1;
} }
}
// We now update the checksum of the packet // We now update the checksum of the packet
// with the deinterleaved and possibly // with the deinterleaved and possibly
// corrected bytes. // corrected bytes.
mp1->checksum_in ^= mp1->buffer[mp1->packetLength-2]; mp1->checksum_in ^= a;
mp1->checksum_in ^= mp1->buffer[mp1->packetLength-1]; mp1->checksum_in ^= b;
mp1->buffer[mp1->packetLength-(MP1_DATA_BLOCK_SIZE)+((i/3)*2)] = a;
mp1->buffer[mp1->packetLength-(MP1_DATA_BLOCK_SIZE-1)+((i/3)*2)] = b;
}
continue; continue;
} }
@ -234,7 +264,7 @@ void mp1Poll(MP1 *mp1) {
if (!mp1->escape && byte == HDLC_FLAG) { if (!mp1->escape && byte == HDLC_FLAG) {
// We are not in an escape sequence and we // We are not in an escape sequence and we
// found a HDLC_FLAG. This can mean two things: // found a HDLC_FLAG. This can mean two things:
if (mp1->packetLength >= MP1_MIN_FRAME_LENGTH) { if (mp1->readLength >= MP1_MIN_FRAME_LENGTH) {
// We already have more data than the minimum // We already have more data than the minimum
// frame length, which means the flag signifies // frame length, which means the flag signifies
// the end of the packet. Pass control to the // the end of the packet. Pass control to the
@ -279,6 +309,7 @@ void mp1Poll(MP1 *mp1) {
// the escape seqeunce indicator so we don't // the escape seqeunce indicator so we don't
// interpret the next byte as a reset or flag // interpret the next byte as a reset or flag
mp1->escape = true; mp1->escape = true;
// We then continue reading the next byte. // We then continue reading the next byte.
continue; continue;
} }
@ -400,36 +431,43 @@ void mp1Send(MP1 *mp1, void *_buffer, size_t length) {
// since we are sending a parity byte for every // since we are sending a parity byte for every
// two data bytes sent, and because interleaving // two data bytes sent, and because interleaving
// happens in blocks of three bytes. // happens in blocks of three bytes.
uint8_t header = 0xf0; uint8_t header = 0x00;
// If we are using compression, set the // If we are using compression, set the
// appropriate header flag to true. // appropriate header flag to true.
if (packetCompression) header ^= MP1_HEADER_COMPRESSION; if (packetCompression) header ^= MP1_HEADER_COMPRESSION;
// We check if the data length is even // We check if the data length matches our
if (length % 2 != 0) { // required block size
// If it is not, we set the appropriate uint8_t padding = (length+2) % MP1_DATA_BLOCK_SIZE;
if (padding != 0) {
// If it does not, we set the appropriate
// header flag to indicate that we are // header flag to indicate that we are
// padding this packet with one byte. // padding this packet.
header ^= MP1_HEADER_PADDED; header ^= MP1_HEADER_PADDED;
// And calculate how much padding we need
padding = MP1_DATA_BLOCK_SIZE - padding;
// And put the amount of padding we are
// going to append in the header
header ^= (padding << 4);
// We then update the checksum with the // We then update the checksum with the
// header byte and queue it for transmit // header byte and queue it for transmit
mp1->checksum_out = mp1->checksum_out ^ header; mp1->checksum_out = mp1->checksum_out ^ header;
mp1Putbyte(mp1, header); mp1Putbyte(mp1, header);
// We now update the checksum with the // We now update the checksum with the
// padding byte, and queue that for // padding bytes, and queue these for
// transmission as well. At this point, // transmission as well.
// we will have pushed out two bytes of for (int i = 0; i < padding; i++) {
// data. The output function will detect mp1->checksum_out = mp1->checksum_out ^ MP1_PADDING;
// this, and a parity byte will be mp1Putbyte(mp1, MP1_PADDING);
// calculated. The 3-byte block is then }
// actually transmitted.
mp1->checksum_out = mp1->checksum_out ^ MP1_PADDING;
mp1Putbyte(mp1, MP1_PADDING);
} else { } else {
// If the length was already even, we // If the length already matches, we
// just update the checksum with the // just update the checksum with the
// header byte and queue it. // header byte and queue it.
mp1->checksum_out = mp1->checksum_out ^ header; mp1->checksum_out = mp1->checksum_out ^ header;
@ -478,132 +516,6 @@ int freeRam(void) {
return FREE_RAM; return FREE_RAM;
} }
// Following is the functions responsible
// for interleaving and deinterleaving
// blocks of data. The interleaving table
// is also included.
///////////////////////////////
// Interleave-table //
///////////////////////////////
//
// Non-interleaved:
// aaaaaaaa bbbbbbbb cccccccc
// 12345678 12345678 12345678
// M L
// S S
// B B
//
// Interleaved:
// abcabcab cabcabca bcabcabc
// 11144477 22255578 63336688
//
//
// 3bit burst error patterns:
// X||||||| X||||||| X|||||||
// |||X|||| X||||||| X|||||||
// |||X|||| |||X|||| X|||||||
// |||X|||| |||X|||| |||X||||
// ||||||X| |||X|||| |||X||||
// ||||||X| ||||||X| |||X||||
// ||||||X| ||||||X| |X||||||
// |X|||||| ||||||X| |X||||||
// |X|||||| |X|||||| |X||||||
// |X|||||| |X|||||| ||||X|||
// ||||X||| |X|||||| ||||X|||
// ||||X||| ||||X||| ||||X|||
// ||||X||| ||||X||| ||||||X|
// |||||||X ||||X||| ||||||X|
// |||||||X |||||X|| ||||||X|
// |||||||X |||||X|| ||X|||||
// ||X||||| |||||X|| ||X|||||
// ||X||||| ||X||||| ||X|||||
// ||X||||| ||X||||| |||||X||
// |||||X|| ||X||||| |||||X||
// |||||X|| |||||||X |||||X||
// |||||X|| |||||||X |||||||X
//
///////////////////////////////
void mp1Interleave(MP1 *mp1, uint8_t byte) {
mp1->interleaveOut[mp1->interleaveCounter] = byte;
mp1->interleaveCounter++;
if (mp1->interleaveCounter == 3) {
// We have three bytes in the buffer and
// are ready to interleave them.
uint8_t a = (GET_BIT(mp1->interleaveOut[0], 1) << 7) +
(GET_BIT(mp1->interleaveOut[1], 1) << 6) +
(GET_BIT(mp1->interleaveOut[2], 1) << 5) +
(GET_BIT(mp1->interleaveOut[0], 4) << 4) +
(GET_BIT(mp1->interleaveOut[1], 4) << 3) +
(GET_BIT(mp1->interleaveOut[2], 4) << 2) +
(GET_BIT(mp1->interleaveOut[0], 7) << 1) +
(GET_BIT(mp1->interleaveOut[1], 7));
mp1WriteByte(mp1, a);
uint8_t b = (GET_BIT(mp1->interleaveOut[2], 2) << 7) +
(GET_BIT(mp1->interleaveOut[0], 2) << 6) +
(GET_BIT(mp1->interleaveOut[1], 2) << 5) +
(GET_BIT(mp1->interleaveOut[2], 5) << 4) +
(GET_BIT(mp1->interleaveOut[0], 5) << 3) +
(GET_BIT(mp1->interleaveOut[1], 5) << 2) +
(GET_BIT(mp1->interleaveOut[2], 7) << 1) +
(GET_BIT(mp1->interleaveOut[0], 8));
mp1WriteByte(mp1, b);
uint8_t c = (GET_BIT(mp1->interleaveOut[1], 6) << 7) +
(GET_BIT(mp1->interleaveOut[2], 3) << 6) +
(GET_BIT(mp1->interleaveOut[0], 3) << 5) +
(GET_BIT(mp1->interleaveOut[1], 3) << 4) +
(GET_BIT(mp1->interleaveOut[2], 6) << 3) +
(GET_BIT(mp1->interleaveOut[0], 6) << 2) +
(GET_BIT(mp1->interleaveOut[1], 8) << 1) +
(GET_BIT(mp1->interleaveOut[2], 8));
mp1WriteByte(mp1, c);
// mp1WriteByte(mp1, a);
// mp1WriteByte(mp1, b);
// mp1WriteByte(mp1, c);
mp1->interleaveCounter = 0;
}
}
void mp1Deinterleave(MP1 *mp1) {
uint8_t a = (GET_BIT(mp1->interleaveIn[0], 1) << 7) +
(GET_BIT(mp1->interleaveIn[1], 2) << 6) +
(GET_BIT(mp1->interleaveIn[2], 3) << 5) +
(GET_BIT(mp1->interleaveIn[0], 4) << 4) +
(GET_BIT(mp1->interleaveIn[1], 5) << 3) +
(GET_BIT(mp1->interleaveIn[2], 6) << 2) +
(GET_BIT(mp1->interleaveIn[0], 7) << 1) +
(GET_BIT(mp1->interleaveIn[1], 8));
uint8_t b = (GET_BIT(mp1->interleaveIn[0], 2) << 7) +
(GET_BIT(mp1->interleaveIn[1], 3) << 6) +
(GET_BIT(mp1->interleaveIn[2], 4) << 5) +
(GET_BIT(mp1->interleaveIn[0], 5) << 4) +
(GET_BIT(mp1->interleaveIn[1], 6) << 3) +
(GET_BIT(mp1->interleaveIn[2], 1) << 2) +
(GET_BIT(mp1->interleaveIn[0], 8) << 1) +
(GET_BIT(mp1->interleaveIn[2], 7));
uint8_t c = (GET_BIT(mp1->interleaveIn[0], 3) << 7) +
(GET_BIT(mp1->interleaveIn[1], 1) << 6) +
(GET_BIT(mp1->interleaveIn[2], 2) << 5) +
(GET_BIT(mp1->interleaveIn[0], 6) << 4) +
(GET_BIT(mp1->interleaveIn[1], 4) << 3) +
(GET_BIT(mp1->interleaveIn[2], 5) << 2) +
(GET_BIT(mp1->interleaveIn[1], 7) << 1) +
(GET_BIT(mp1->interleaveIn[2], 8));
mp1->interleaveIn[0] = a;
mp1->interleaveIn[1] = b;
mp1->interleaveIn[2] = c;
}
// This function compresses data using // This function compresses data using
// the Heatshrink library // the Heatshrink library
size_t compress(uint8_t *input, size_t length) { size_t compress(uint8_t *input, size_t length) {
@ -657,3 +569,353 @@ size_t decompress(uint8_t *input, size_t length) {
heatshrink_decoder_free(hsd); heatshrink_decoder_free(hsd);
return written; return written;
} }
// Following is the functions responsible
// for interleaving and deinterleaving
// blocks of data. The interleaving table
// for 3-byte interleaving is also included.
// The table for 12-byte is much simpler,
// and should be inferable from looking
// at the function.
///////////////////////////////
// Interleave-table (3-byte) //
///////////////////////////////
//
// Non-interleaved:
// aaaaaaaa bbbbbbbb cccccccc
// 12345678 12345678 12345678
// M L
// S S
// B B
//
// Interleaved:
// abcabcab cabcabca bcabcabc
// 11144477 22255578 63336688
//
///////////////////////////////
void mp1Interleave(MP1 *mp1, uint8_t byte) {
mp1->interleaveOut[mp1->interleaveCounter] = byte;
mp1->interleaveCounter++;
if (mp1->interleaveCounter == MP1_INTERLEAVE_SIZE) {
// We have the bytes we need for interleaving
// in the buffer and are ready to interleave them.
#if MP1_INTERLEAVE_SIZE == 3
// This is for 3-byte interleaving
uint8_t a = (GET_BIT(mp1->interleaveOut[0], 1) << 7) +
(GET_BIT(mp1->interleaveOut[1], 1) << 6) +
(GET_BIT(mp1->interleaveOut[2], 1) << 5) +
(GET_BIT(mp1->interleaveOut[0], 4) << 4) +
(GET_BIT(mp1->interleaveOut[1], 4) << 3) +
(GET_BIT(mp1->interleaveOut[2], 4) << 2) +
(GET_BIT(mp1->interleaveOut[0], 7) << 1) +
(GET_BIT(mp1->interleaveOut[1], 7));
mp1WriteByte(mp1, a);
uint8_t b = (GET_BIT(mp1->interleaveOut[2], 2) << 7) +
(GET_BIT(mp1->interleaveOut[0], 2) << 6) +
(GET_BIT(mp1->interleaveOut[1], 2) << 5) +
(GET_BIT(mp1->interleaveOut[2], 5) << 4) +
(GET_BIT(mp1->interleaveOut[0], 5) << 3) +
(GET_BIT(mp1->interleaveOut[1], 5) << 2) +
(GET_BIT(mp1->interleaveOut[2], 7) << 1) +
(GET_BIT(mp1->interleaveOut[0], 8));
mp1WriteByte(mp1, b);
uint8_t c = (GET_BIT(mp1->interleaveOut[1], 6) << 7) +
(GET_BIT(mp1->interleaveOut[2], 3) << 6) +
(GET_BIT(mp1->interleaveOut[0], 3) << 5) +
(GET_BIT(mp1->interleaveOut[1], 3) << 4) +
(GET_BIT(mp1->interleaveOut[2], 6) << 3) +
(GET_BIT(mp1->interleaveOut[0], 6) << 2) +
(GET_BIT(mp1->interleaveOut[1], 8) << 1) +
(GET_BIT(mp1->interleaveOut[2], 8));
mp1WriteByte(mp1, c);
#elif MP1_INTERLEAVE_SIZE == 12
// This is for 12-byte interleaving
uint8_t a = (GET_BIT(mp1->interleaveOut[0], 1) << 7) +
(GET_BIT(mp1->interleaveOut[1], 1) << 6) +
(GET_BIT(mp1->interleaveOut[3], 1) << 5) +
(GET_BIT(mp1->interleaveOut[4], 1) << 4) +
(GET_BIT(mp1->interleaveOut[6], 1) << 3) +
(GET_BIT(mp1->interleaveOut[7], 1) << 2) +
(GET_BIT(mp1->interleaveOut[9], 1) << 1) +
(GET_BIT(mp1->interleaveOut[10],1));
mp1WriteByte(mp1, a);
uint8_t b = (GET_BIT(mp1->interleaveOut[0], 2) << 7) +
(GET_BIT(mp1->interleaveOut[1], 2) << 6) +
(GET_BIT(mp1->interleaveOut[3], 2) << 5) +
(GET_BIT(mp1->interleaveOut[4], 2) << 4) +
(GET_BIT(mp1->interleaveOut[6], 2) << 3) +
(GET_BIT(mp1->interleaveOut[7], 2) << 2) +
(GET_BIT(mp1->interleaveOut[9], 2) << 1) +
(GET_BIT(mp1->interleaveOut[10],2));
mp1WriteByte(mp1, b);
uint8_t c = (GET_BIT(mp1->interleaveOut[0], 3) << 7) +
(GET_BIT(mp1->interleaveOut[1], 3) << 6) +
(GET_BIT(mp1->interleaveOut[3], 3) << 5) +
(GET_BIT(mp1->interleaveOut[4], 3) << 4) +
(GET_BIT(mp1->interleaveOut[6], 3) << 3) +
(GET_BIT(mp1->interleaveOut[7], 3) << 2) +
(GET_BIT(mp1->interleaveOut[9], 3) << 1) +
(GET_BIT(mp1->interleaveOut[10],3));
mp1WriteByte(mp1, c);
uint8_t d = (GET_BIT(mp1->interleaveOut[0], 4) << 7) +
(GET_BIT(mp1->interleaveOut[1], 4) << 6) +
(GET_BIT(mp1->interleaveOut[3], 4) << 5) +
(GET_BIT(mp1->interleaveOut[4], 4) << 4) +
(GET_BIT(mp1->interleaveOut[6], 4) << 3) +
(GET_BIT(mp1->interleaveOut[7], 4) << 2) +
(GET_BIT(mp1->interleaveOut[9], 4) << 1) +
(GET_BIT(mp1->interleaveOut[10],4));
mp1WriteByte(mp1, d);
uint8_t e = (GET_BIT(mp1->interleaveOut[0], 5) << 7) +
(GET_BIT(mp1->interleaveOut[1], 5) << 6) +
(GET_BIT(mp1->interleaveOut[3], 5) << 5) +
(GET_BIT(mp1->interleaveOut[4], 5) << 4) +
(GET_BIT(mp1->interleaveOut[6], 5) << 3) +
(GET_BIT(mp1->interleaveOut[7], 5) << 2) +
(GET_BIT(mp1->interleaveOut[9], 5) << 1) +
(GET_BIT(mp1->interleaveOut[10],5));
mp1WriteByte(mp1, e);
uint8_t f = (GET_BIT(mp1->interleaveOut[0], 6) << 7) +
(GET_BIT(mp1->interleaveOut[1], 6) << 6) +
(GET_BIT(mp1->interleaveOut[3], 6) << 5) +
(GET_BIT(mp1->interleaveOut[4], 6) << 4) +
(GET_BIT(mp1->interleaveOut[6], 6) << 3) +
(GET_BIT(mp1->interleaveOut[7], 6) << 2) +
(GET_BIT(mp1->interleaveOut[9], 6) << 1) +
(GET_BIT(mp1->interleaveOut[10],6));
mp1WriteByte(mp1, f);
uint8_t g = (GET_BIT(mp1->interleaveOut[0], 7) << 7) +
(GET_BIT(mp1->interleaveOut[1], 7) << 6) +
(GET_BIT(mp1->interleaveOut[3], 7) << 5) +
(GET_BIT(mp1->interleaveOut[4], 7) << 4) +
(GET_BIT(mp1->interleaveOut[6], 7) << 3) +
(GET_BIT(mp1->interleaveOut[7], 7) << 2) +
(GET_BIT(mp1->interleaveOut[9], 7) << 1) +
(GET_BIT(mp1->interleaveOut[10],7));
mp1WriteByte(mp1, g);
uint8_t h = (GET_BIT(mp1->interleaveOut[0], 8) << 7) +
(GET_BIT(mp1->interleaveOut[1], 8) << 6) +
(GET_BIT(mp1->interleaveOut[3], 8) << 5) +
(GET_BIT(mp1->interleaveOut[4], 8) << 4) +
(GET_BIT(mp1->interleaveOut[6], 8) << 3) +
(GET_BIT(mp1->interleaveOut[7], 8) << 2) +
(GET_BIT(mp1->interleaveOut[9], 8) << 1) +
(GET_BIT(mp1->interleaveOut[10],8));
mp1WriteByte(mp1, h);
uint8_t p = (GET_BIT(mp1->interleaveOut[2], 1) << 7) +
(GET_BIT(mp1->interleaveOut[2], 5) << 6) +
(GET_BIT(mp1->interleaveOut[5], 1) << 5) +
(GET_BIT(mp1->interleaveOut[5], 5) << 4) +
(GET_BIT(mp1->interleaveOut[8], 1) << 3) +
(GET_BIT(mp1->interleaveOut[8], 5) << 2) +
(GET_BIT(mp1->interleaveOut[11],1) << 1) +
(GET_BIT(mp1->interleaveOut[11],5));
mp1WriteByte(mp1, p);
uint8_t q = (GET_BIT(mp1->interleaveOut[2], 2) << 7) +
(GET_BIT(mp1->interleaveOut[2], 6) << 6) +
(GET_BIT(mp1->interleaveOut[5], 2) << 5) +
(GET_BIT(mp1->interleaveOut[5], 6) << 4) +
(GET_BIT(mp1->interleaveOut[8], 2) << 3) +
(GET_BIT(mp1->interleaveOut[8], 6) << 2) +
(GET_BIT(mp1->interleaveOut[11],2) << 1) +
(GET_BIT(mp1->interleaveOut[11],6));
mp1WriteByte(mp1, q);
uint8_t s = (GET_BIT(mp1->interleaveOut[2], 3) << 7) +
(GET_BIT(mp1->interleaveOut[2], 7) << 6) +
(GET_BIT(mp1->interleaveOut[5], 3) << 5) +
(GET_BIT(mp1->interleaveOut[5], 7) << 4) +
(GET_BIT(mp1->interleaveOut[8], 3) << 3) +
(GET_BIT(mp1->interleaveOut[8], 7) << 2) +
(GET_BIT(mp1->interleaveOut[11],3) << 1) +
(GET_BIT(mp1->interleaveOut[11],7));
mp1WriteByte(mp1, s);
uint8_t t = (GET_BIT(mp1->interleaveOut[2], 4) << 7) +
(GET_BIT(mp1->interleaveOut[2], 8) << 6) +
(GET_BIT(mp1->interleaveOut[5], 4) << 5) +
(GET_BIT(mp1->interleaveOut[5], 8) << 4) +
(GET_BIT(mp1->interleaveOut[8], 4) << 3) +
(GET_BIT(mp1->interleaveOut[8], 8) << 2) +
(GET_BIT(mp1->interleaveOut[11],4) << 1) +
(GET_BIT(mp1->interleaveOut[11],8));
mp1WriteByte(mp1, t);
#endif
mp1->interleaveCounter = 0;
}
}
void mp1Deinterleave(MP1 *mp1) {
#if MP1_INTERLEAVE_SIZE == 3
uint8_t a = (GET_BIT(mp1->interleaveIn[0], 1) << 7) +
(GET_BIT(mp1->interleaveIn[1], 2) << 6) +
(GET_BIT(mp1->interleaveIn[2], 3) << 5) +
(GET_BIT(mp1->interleaveIn[0], 4) << 4) +
(GET_BIT(mp1->interleaveIn[1], 5) << 3) +
(GET_BIT(mp1->interleaveIn[2], 6) << 2) +
(GET_BIT(mp1->interleaveIn[0], 7) << 1) +
(GET_BIT(mp1->interleaveIn[1], 8));
uint8_t b = (GET_BIT(mp1->interleaveIn[0], 2) << 7) +
(GET_BIT(mp1->interleaveIn[1], 3) << 6) +
(GET_BIT(mp1->interleaveIn[2], 4) << 5) +
(GET_BIT(mp1->interleaveIn[0], 5) << 4) +
(GET_BIT(mp1->interleaveIn[1], 6) << 3) +
(GET_BIT(mp1->interleaveIn[2], 1) << 2) +
(GET_BIT(mp1->interleaveIn[0], 8) << 1) +
(GET_BIT(mp1->interleaveIn[2], 7));
uint8_t c = (GET_BIT(mp1->interleaveIn[0], 3) << 7) +
(GET_BIT(mp1->interleaveIn[1], 1) << 6) +
(GET_BIT(mp1->interleaveIn[2], 2) << 5) +
(GET_BIT(mp1->interleaveIn[0], 6) << 4) +
(GET_BIT(mp1->interleaveIn[1], 4) << 3) +
(GET_BIT(mp1->interleaveIn[2], 5) << 2) +
(GET_BIT(mp1->interleaveIn[1], 7) << 1) +
(GET_BIT(mp1->interleaveIn[2], 8));
mp1->interleaveIn[0] = a;
mp1->interleaveIn[1] = b;
mp1->interleaveIn[2] = c;
#elif MP1_INTERLEAVE_SIZE == 12
uint8_t a = (GET_BIT(mp1->interleaveIn[0], 1) << 7) +
(GET_BIT(mp1->interleaveIn[1], 1) << 6) +
(GET_BIT(mp1->interleaveIn[2], 1) << 5) +
(GET_BIT(mp1->interleaveIn[3], 1) << 4) +
(GET_BIT(mp1->interleaveIn[4], 1) << 3) +
(GET_BIT(mp1->interleaveIn[5], 1) << 2) +
(GET_BIT(mp1->interleaveIn[6], 1) << 1) +
(GET_BIT(mp1->interleaveIn[7], 1));
uint8_t b = (GET_BIT(mp1->interleaveIn[0], 2) << 7) +
(GET_BIT(mp1->interleaveIn[1], 2) << 6) +
(GET_BIT(mp1->interleaveIn[2], 2) << 5) +
(GET_BIT(mp1->interleaveIn[3], 2) << 4) +
(GET_BIT(mp1->interleaveIn[4], 2) << 3) +
(GET_BIT(mp1->interleaveIn[5], 2) << 2) +
(GET_BIT(mp1->interleaveIn[6], 2) << 1) +
(GET_BIT(mp1->interleaveIn[7], 2));
uint8_t p = (GET_BIT(mp1->interleaveIn[8], 1) << 7) +
(GET_BIT(mp1->interleaveIn[9], 1) << 6) +
(GET_BIT(mp1->interleaveIn[10],1) << 5) +
(GET_BIT(mp1->interleaveIn[11],1) << 4) +
(GET_BIT(mp1->interleaveIn[8], 2) << 3) +
(GET_BIT(mp1->interleaveIn[9], 2) << 2) +
(GET_BIT(mp1->interleaveIn[10],2) << 1) +
(GET_BIT(mp1->interleaveIn[11],2));
uint8_t c = (GET_BIT(mp1->interleaveIn[0], 3) << 7) +
(GET_BIT(mp1->interleaveIn[1], 3) << 6) +
(GET_BIT(mp1->interleaveIn[2], 3) << 5) +
(GET_BIT(mp1->interleaveIn[3], 3) << 4) +
(GET_BIT(mp1->interleaveIn[4], 3) << 3) +
(GET_BIT(mp1->interleaveIn[5], 3) << 2) +
(GET_BIT(mp1->interleaveIn[6], 3) << 1) +
(GET_BIT(mp1->interleaveIn[7], 3));
uint8_t d = (GET_BIT(mp1->interleaveIn[0], 4) << 7) +
(GET_BIT(mp1->interleaveIn[1], 4) << 6) +
(GET_BIT(mp1->interleaveIn[2], 4) << 5) +
(GET_BIT(mp1->interleaveIn[3], 4) << 4) +
(GET_BIT(mp1->interleaveIn[4], 4) << 3) +
(GET_BIT(mp1->interleaveIn[5], 4) << 2) +
(GET_BIT(mp1->interleaveIn[6], 4) << 1) +
(GET_BIT(mp1->interleaveIn[7], 4));
uint8_t q = (GET_BIT(mp1->interleaveIn[8], 3) << 7) +
(GET_BIT(mp1->interleaveIn[9], 3) << 6) +
(GET_BIT(mp1->interleaveIn[10],3) << 5) +
(GET_BIT(mp1->interleaveIn[11],3) << 4) +
(GET_BIT(mp1->interleaveIn[8], 4) << 3) +
(GET_BIT(mp1->interleaveIn[9], 4) << 2) +
(GET_BIT(mp1->interleaveIn[10],4) << 1) +
(GET_BIT(mp1->interleaveIn[11],4));
uint8_t e = (GET_BIT(mp1->interleaveIn[0], 5) << 7) +
(GET_BIT(mp1->interleaveIn[1], 5) << 6) +
(GET_BIT(mp1->interleaveIn[2], 5) << 5) +
(GET_BIT(mp1->interleaveIn[3], 5) << 4) +
(GET_BIT(mp1->interleaveIn[4], 5) << 3) +
(GET_BIT(mp1->interleaveIn[5], 5) << 2) +
(GET_BIT(mp1->interleaveIn[6], 5) << 1) +
(GET_BIT(mp1->interleaveIn[7], 5));
uint8_t f = (GET_BIT(mp1->interleaveIn[0], 6) << 7) +
(GET_BIT(mp1->interleaveIn[1], 6) << 6) +
(GET_BIT(mp1->interleaveIn[2], 6) << 5) +
(GET_BIT(mp1->interleaveIn[3], 6) << 4) +
(GET_BIT(mp1->interleaveIn[4], 6) << 3) +
(GET_BIT(mp1->interleaveIn[5], 6) << 2) +
(GET_BIT(mp1->interleaveIn[6], 6) << 1) +
(GET_BIT(mp1->interleaveIn[7], 6));
uint8_t s = (GET_BIT(mp1->interleaveIn[8], 5) << 7) +
(GET_BIT(mp1->interleaveIn[9], 5) << 6) +
(GET_BIT(mp1->interleaveIn[10],5) << 5) +
(GET_BIT(mp1->interleaveIn[11],5) << 4) +
(GET_BIT(mp1->interleaveIn[8], 6) << 3) +
(GET_BIT(mp1->interleaveIn[9], 6) << 2) +
(GET_BIT(mp1->interleaveIn[10],6) << 1) +
(GET_BIT(mp1->interleaveIn[11],6));
uint8_t g = (GET_BIT(mp1->interleaveIn[0], 7) << 7) +
(GET_BIT(mp1->interleaveIn[1], 7) << 6) +
(GET_BIT(mp1->interleaveIn[2], 7) << 5) +
(GET_BIT(mp1->interleaveIn[3], 7) << 4) +
(GET_BIT(mp1->interleaveIn[4], 7) << 3) +
(GET_BIT(mp1->interleaveIn[5], 7) << 2) +
(GET_BIT(mp1->interleaveIn[6], 7) << 1) +
(GET_BIT(mp1->interleaveIn[7], 7));
uint8_t h = (GET_BIT(mp1->interleaveIn[0], 8) << 7) +
(GET_BIT(mp1->interleaveIn[1], 8) << 6) +
(GET_BIT(mp1->interleaveIn[2], 8) << 5) +
(GET_BIT(mp1->interleaveIn[3], 8) << 4) +
(GET_BIT(mp1->interleaveIn[4], 8) << 3) +
(GET_BIT(mp1->interleaveIn[5], 8) << 2) +
(GET_BIT(mp1->interleaveIn[6], 8) << 1) +
(GET_BIT(mp1->interleaveIn[7], 8));
uint8_t t = (GET_BIT(mp1->interleaveIn[8], 7) << 7) +
(GET_BIT(mp1->interleaveIn[9], 7) << 6) +
(GET_BIT(mp1->interleaveIn[10],7) << 5) +
(GET_BIT(mp1->interleaveIn[11],7) << 4) +
(GET_BIT(mp1->interleaveIn[8], 8) << 3) +
(GET_BIT(mp1->interleaveIn[9], 8) << 2) +
(GET_BIT(mp1->interleaveIn[10],8) << 1) +
(GET_BIT(mp1->interleaveIn[11],8));
mp1->interleaveIn[0] = a;
mp1->interleaveIn[1] = b;
mp1->interleaveIn[2] = p;
mp1->interleaveIn[3] = c;
mp1->interleaveIn[4] = d;
mp1->interleaveIn[5] = q;
mp1->interleaveIn[6] = e;
mp1->interleaveIn[7] = f;
mp1->interleaveIn[8] = s;
mp1->interleaveIn[9] = g;
mp1->interleaveIn[10] = h;
mp1->interleaveIn[11] = t;
#endif
}

View File

@ -5,9 +5,10 @@
#include <io/kfile.h> #include <io/kfile.h>
// Frame sizing & checksum // Frame sizing & checksum
#define MP1_MIN_FRAME_LENGTH 3 #define MP1_INTERLEAVE_SIZE 12
#define MP1_MIN_FRAME_LENGTH MP1_INTERLEAVE_SIZE
#define MP1_DATA_BLOCK_SIZE ((MP1_INTERLEAVE_SIZE/3)*2)
#define MP1_MAX_FRAME_LENGTH 250 #define MP1_MAX_FRAME_LENGTH 250
#define MP1_INTERLEAVE_SIZE 3
#define MP1_CHECKSUM_INIT 0xAA #define MP1_CHECKSUM_INIT 0xAA
// We need to know some basic HDLC flag bytes // We need to know some basic HDLC flag bytes
@ -33,7 +34,7 @@ typedef void (*mp1_callback_t)(struct MP1Packet *packet);
// Struct for a protocol context // Struct for a protocol context
typedef struct MP1 { typedef struct MP1 {
uint8_t buffer[MP1_MAX_FRAME_LENGTH]; // A buffer for incoming packets uint8_t buffer[MP1_MAX_FRAME_LENGTH]; // A buffer for incoming packets
uint8_t fecBuffer[3]; // FEC buffer uint8_t fecBuffer[3]; // Forward Error Correction buffer
KFile *modem; // KFile access to the modem KFile *modem; // KFile access to the modem
size_t packetLength; // Counter for received packet length size_t packetLength; // Counter for received packet length
size_t readLength; // This is the full read length, including parity bytes size_t readLength; // This is the full read length, including parity bytes

View File

@ -1,2 +1,2 @@
#define VERS_BUILD 1323 #define VERS_BUILD 1373
#define VERS_HOST "vixen" #define VERS_HOST "vixen"