Updated documentation

This commit is contained in:
Mark Qvist 2014-04-16 15:10:30 +02:00
parent 85286ad467
commit 9637efd46f
3 changed files with 320 additions and 162 deletions

View File

@ -7,13 +7,29 @@
#include "compression/heatshrink_encoder.h" #include "compression/heatshrink_encoder.h"
#include "compression/heatshrink_decoder.h" #include "compression/heatshrink_decoder.h"
// FIXME: Describe these // We need an indicator to tell us whether we
static uint8_t lastByte = 0x00; // should send a parity byte. This happens
// whenever two normal bytes of data has been
// sent. We also keep the last sent byte in
// memory because we need it to calculate the
// parity byte.
static bool sendParityBlock = false; static bool sendParityBlock = false;
static uint8_t lastByte = 0x00;
// We also need a buffer for compressing and
// decompressing packet data.
static uint8_t compressionBuffer[MP1_MAX_FRAME_LENGTH+10];
// FIXME: Describe this // The GET_BIT macro is used in the interleaver
// and deinterleaver to access single bits of a
// byte.
INLINE bool GET_BIT(uint8_t byte, int n) { return (byte & (1 << (8-n))) == (1 << (8-n)); } INLINE bool GET_BIT(uint8_t byte, int n) { return (byte & (1 << (8-n))) == (1 << (8-n)); }
// This function calculates and returns a parity
// byte for two input bytes. The parity byte is
// used for correcting errors in the transmission.
// The error correction algorithm is a standard
// (12,8) Hamming code.
INLINE bool BIT(uint8_t byte, int n) { return ((byte & BV(n-1))>>(n-1)); } INLINE bool BIT(uint8_t byte, int n) { return ((byte & BV(n-1))>>(n-1)); }
static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) { static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) {
uint8_t parity = 0x00; uint8_t parity = 0x00;
@ -31,11 +47,14 @@ static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) {
return parity; return parity;
} }
// This deode function retrieves the buffer of
// received, deinterleaved and error-corrected
// bytes, inspects the header and determines
// whether there is padding to be removed, and
// whether the packet is compressed. If it is
// it is decompressed before being passed to
// the registered callback.
static void mp1Decode(MP1 *mp1) { static void mp1Decode(MP1 *mp1) {
// This decode function is basic and bare minimum.
// It does nothing more than extract the data
// payload from the buffer and put it into a struct
// for further processing.
MP1Packet packet; // A decoded packet struct MP1Packet packet; // A decoded packet struct
uint8_t *buffer = mp1->buffer; // Get the buffer from the protocol context uint8_t *buffer = mp1->buffer; // Get the buffer from the protocol context
@ -55,11 +74,14 @@ static void mp1Decode(MP1 *mp1) {
// Check if we have received a compressed packet // Check if we have received a compressed packet
if (header & MP1_HEADER_COMPRESSION) { if (header & MP1_HEADER_COMPRESSION) {
// If we have, we decompress it and use the
// decompressed data for the packet
size_t decompressedSize = decompress(buffer, packet.dataLength); size_t decompressedSize = decompress(buffer, packet.dataLength);
packet.dataLength = decompressedSize; packet.dataLength = decompressedSize;
memcpy(buffer, compressionBuffer, decompressedSize); memcpy(buffer, compressionBuffer, decompressedSize);
} }
// Set the data field of the packet to our buffer
packet.data = buffer; packet.data = buffer;
// If a callback have been specified, let's // If a callback have been specified, let's
@ -67,43 +89,6 @@ static void mp1Decode(MP1 *mp1) {
if (mp1->callback) mp1->callback(&packet); if (mp1->callback) mp1->callback(&packet);
} }
// Interleaved:
// abcabcab cabcabca bcabcabc
// 11144477 22255578 63336688
//
// 0 1 2
static void mp1Deinterleave(MP1 *mp1) {
uint8_t a = (GET_BIT(mp1->interleaveIn[0], 1) << 7) +
(GET_BIT(mp1->interleaveIn[1], 2) << 6) +
(GET_BIT(mp1->interleaveIn[2], 3) << 5) +
(GET_BIT(mp1->interleaveIn[0], 4) << 4) +
(GET_BIT(mp1->interleaveIn[1], 5) << 3) +
(GET_BIT(mp1->interleaveIn[2], 6) << 2) +
(GET_BIT(mp1->interleaveIn[0], 7) << 1) +
(GET_BIT(mp1->interleaveIn[1], 8));
uint8_t b = (GET_BIT(mp1->interleaveIn[0], 2) << 7) +
(GET_BIT(mp1->interleaveIn[1], 3) << 6) +
(GET_BIT(mp1->interleaveIn[2], 4) << 5) +
(GET_BIT(mp1->interleaveIn[0], 5) << 4) +
(GET_BIT(mp1->interleaveIn[1], 6) << 3) +
(GET_BIT(mp1->interleaveIn[2], 1) << 2) +
(GET_BIT(mp1->interleaveIn[0], 8) << 1) +
(GET_BIT(mp1->interleaveIn[2], 7));
uint8_t c = (GET_BIT(mp1->interleaveIn[0], 3) << 7) +
(GET_BIT(mp1->interleaveIn[1], 1) << 6) +
(GET_BIT(mp1->interleaveIn[2], 2) << 5) +
(GET_BIT(mp1->interleaveIn[0], 6) << 4) +
(GET_BIT(mp1->interleaveIn[1], 4) << 3) +
(GET_BIT(mp1->interleaveIn[2], 5) << 2) +
(GET_BIT(mp1->interleaveIn[1], 7) << 1) +
(GET_BIT(mp1->interleaveIn[2], 8));
mp1->interleaveIn[0] = a;
mp1->interleaveIn[1] = b;
mp1->interleaveIn[2] = c;
}
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// The Poll function reads data from the modem, handles // // The Poll function reads data from the modem, handles //
@ -118,37 +103,87 @@ void mp1Poll(MP1 *mp1) {
while ((byte = kfile_getc(mp1->modem)) != EOF) { while ((byte = kfile_getc(mp1->modem)) != EOF) {
// We have a byte, increment our read counter // We have a byte, increment our read counter
// FIXME: Describe error correction /////////////////////////////////////////////
// This following block handles forward //
// error correction using an interleaved //
// (12,8) Hamming code //
/////////////////////////////////////////////
// If we have started reading (received an
// HDLC_FLAG), we will start looking at the
// incoming data and perform forward error
// correction on it.
if (mp1->reading && (byte != AX25_ESC) ) { if (mp1->reading && (byte != AX25_ESC) ) {
mp1->readLength++; mp1->readLength++;
// Check if we have read three bytes. If we
// have, we should now have a block of two
// data bytes and a parity byte. This block
if (mp1->readLength % 3 == 0) { if (mp1->readLength % 3 == 0) {
// Put bytes in deinterleave buffer // The block is interleaved, so we will
// first put the received bytes in the
// deinterleaving buffer
mp1->interleaveIn[0] = mp1->buffer[mp1->packetLength-2]; mp1->interleaveIn[0] = mp1->buffer[mp1->packetLength-2];
mp1->interleaveIn[1] = mp1->buffer[mp1->packetLength-1]; mp1->interleaveIn[1] = mp1->buffer[mp1->packetLength-1];
mp1->interleaveIn[2] = byte; mp1->interleaveIn[2] = byte;
// We then deinterleave the block
mp1Deinterleave(mp1); mp1Deinterleave(mp1);
// And write the deinterleaved data
// back into the buffer
mp1->buffer[mp1->packetLength-2] = mp1->interleaveIn[0]; mp1->buffer[mp1->packetLength-2] = mp1->interleaveIn[0];
mp1->buffer[mp1->packetLength-1] = mp1->interleaveIn[1]; mp1->buffer[mp1->packetLength-1] = mp1->interleaveIn[1];
// We now calculate a parity byte on the
// received data.
mp1->calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]); mp1->calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]);
// By XORing the calculated parity byte
// with the received parity byte, we get
// what is called the "syndrome". This
// number will tell us if we had any
// errors during transmission, and if so
// where they are. Using Hamming code, we
// can only detect single bit errors in a
// byte though, which is why we interleave
// the data, since most errors will usually
// occur in bursts of more than one bit.
// With 2 data byte interleaving we can
// correct 2 consecutive bit errors.
uint8_t syndrome = mp1->calculatedParity ^ mp1->interleaveIn[2]; uint8_t syndrome = mp1->calculatedParity ^ mp1->interleaveIn[2];
if (syndrome == 0x00) { if (syndrome == 0x00) {
// No problems! // If the syndrome equals 0, we either
// don't have any errors, or the error
// is unrecoverable, so we don't do
// anything
} else { } else {
// If the syndrome is not equal to 0,
// there is a problem, and we will try
// to correct it. We first need to split
// the syndrome byte up into the two
// actual syndrome numbers, one for
// each data byte.
uint8_t syndromes[2]; uint8_t syndromes[2];
syndromes[0] = syndrome & 0x0f; syndromes[0] = syndrome & 0x0f;
syndromes[1] = (syndrome & 0xf0) >> 4; syndromes[1] = (syndrome & 0xf0) >> 4;
// Then we look at each syndrome number
// to determine what bit in the data
// bytes to correct.
for (int i = 0; i < 2; i++) { for (int i = 0; i < 2; i++) {
uint8_t s = syndromes[i]; uint8_t s = syndromes[i];
uint8_t correction = 0x00; uint8_t correction = 0x00;
if (s == 1 || s == 2 || s == 4 || s == 8) { if (s == 1 || s == 2 || s == 4 || s == 8) {
// Error in parity bit, no correction needed // This signifies an error in the
// parity block, so we actually
// don't need any correction
continue; continue;
} }
// The following determines what
// bit to correct according to
// the syndrome value.
if (s == 3) correction = 0x01; if (s == 3) correction = 0x01;
if (s == 5) correction = 0x02; if (s == 5) correction = 0x02;
if (s == 6) correction = 0x04; if (s == 6) correction = 0x04;
@ -158,21 +193,36 @@ void mp1Poll(MP1 *mp1) {
if (s == 11) correction = 0x40; if (s == 11) correction = 0x40;
if (s == 12) correction = 0x80; if (s == 12) correction = 0x80;
// And finally we apply the correction
mp1->buffer[mp1->packetLength-(2-i)] ^= correction; mp1->buffer[mp1->packetLength-(2-i)] ^= correction;
// This is just for testing purposes.
// Nice to know when corrections were
// actually made.
if (s != 0) mp1->correctionsMade += 1; if (s != 0) mp1->correctionsMade += 1;
} }
} }
// We now update the checksum of the packet
// with the deinterleaved and possibly
// corrected bytes.
mp1->checksum_in ^= mp1->buffer[mp1->packetLength-2]; mp1->checksum_in ^= mp1->buffer[mp1->packetLength-2];
mp1->checksum_in ^= mp1->buffer[mp1->packetLength-1]; mp1->checksum_in ^= mp1->buffer[mp1->packetLength-1];
//mp1->checksum_in ^= mp1->interleaveIn[2];
continue; continue;
} }
} }
// FIXME: Describe error correction ////////// /////////////////////////////////////////////
// End of forward error correction block //
/////////////////////////////////////////////
// This next part of the poll function handles
// the reading from the modem, and looks for
// starts and ends of transmissions. It also
// handles escape characters by discarding them
// so they don't get put into the output data.
// Let's first check if we have read an HDLC_FLAG.
if (!mp1->escape && byte == HDLC_FLAG) { if (!mp1->escape && byte == HDLC_FLAG) {
// We are not in an escape sequence and we // We are not in an escape sequence and we
// found a HDLC_FLAG. This can mean two things: // found a HDLC_FLAG. This can mean two things:
@ -216,13 +266,12 @@ void mp1Poll(MP1 *mp1) {
continue; continue;
} }
// This should be a parity byte
if (!mp1->escape && byte == AX25_ESC) { if (!mp1->escape && byte == AX25_ESC) {
// We found an escape character. We'll set // We found an escape character. We'll set
// the escape seqeunce indicator so we don't // the escape seqeunce indicator so we don't
// interpret the next byte as a reset or flag // interpret the next byte as a reset or flag
mp1->escape = true; mp1->escape = true;
// We then continue reading the next byte.
continue; continue;
} }
@ -231,8 +280,10 @@ void mp1Poll(MP1 *mp1) {
if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) { if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) {
// If the length of the current incoming frame is // If the length of the current incoming frame is
// still less than our max length, put the incoming // still less than our max length, put the incoming
// byte in the buffer. // byte in the buffer. When we have collected 3
// mp1->checksum_in = mp1->checksum_in ^ byte; // bytes, they will be processed by the error
// correction part above.
mp1->buffer[mp1->packetLength++] = byte; mp1->buffer[mp1->packetLength++] = byte;
} else { } else {
// If not, we have a problem: The buffer has overrun // If not, we have a problem: The buffer has overrun
@ -268,6 +319,162 @@ static void mp1WriteByte(MP1 *mp1, uint8_t byte) {
kfile_putc(byte, mp1->modem); kfile_putc(byte, mp1->modem);
} }
// This is an intermediary function that
// receives outgoing bytes, and adds
// interleaving and a parity byte to the
// outgoing data in blocks of two data
// bytes. The actual transmitted block will
// be 3 bytes long due to the added parity
// byte.
static void mp1Putbyte(MP1 *mp1, uint8_t byte) {
mp1Interleave(mp1, byte);
if (sendParityBlock) {
uint8_t p = mp1ParityBlock(lastByte, byte);
//kfile_putc(p, mp1->modem);
mp1Interleave(mp1, p);
}
lastByte = byte;
sendParityBlock ^= true;
}
// This function accepts a buffer with data
// to be transmitted, and structures it into
// a valid packet.
void mp1Send(MP1 *mp1, const void *_buffer, size_t length) {
// Get the transmit data buffer
const uint8_t *buffer = (const uint8_t *)_buffer;
// Initialize checksum to zero
mp1->checksum_out = MP1_CHECKSUM_INIT;
// We also reset the interleave counter to zero
mp1->interleaveCounter = 0;
// Transmit the HDLC_FLAG to signify start of TX
kfile_putc(HDLC_FLAG, mp1->modem);
// We start out assuming we should not use
// compression.
bool packetCompression = false;
// We then try to compress the data to see
// if we can save some space with compression.
size_t compressedSize = compress(buffer, length);
if (compressedSize != 0 && compressedSize < length) {
// Compression saved us some space, we'll
// send the paket compressed
packetCompression = true;
// Write the compressed data into the
// outgoing data buffer
memcpy(buffer, compressionBuffer, compressedSize);
// Make sure to set the length of the
// data to the new (compressed) length
length = compressedSize;
} else {
// We are not going to use compression,
// so we don't do anything.
}
// We now need to construct a header, that
// can tell the receiving end whether the
// packet is compressed. Since a packet must
// have an even number of total payload bytes
// (including the header), we check the length
// of the outgoing data, and if it is not even,
// we add a single byte of padding to the
// packet. Remember that we also send a single
// byte checksum at the end of the packet, so
// the header and checksum bytes together don't
// change whether the payload length is even
// or not. The payload length needs to be even
// since we are sending a parity byte for every
// two data bytes sent, and because interleaving
// happens in blocks of three bytes.
uint8_t header = 0xf0;
// If we are using compression, set the
// appropriate header flag to true.
if (packetCompression) header ^= MP1_HEADER_COMPRESSION;
// We check if the data length is even
if (length % 2 != 0) {
// If it is not, we set the appropriate
// header flag to indicate that we are
// padding this packet with one byte.
header ^= MP1_HEADER_PADDED;
// We then update the checksum with the
// header byte and queue it for transmit
mp1->checksum_out = mp1->checksum_out ^ header;
mp1Putbyte(mp1, header);
// We now update the checksum with the
// padding byte, and queue that for
// transmission as well. At this point,
// we will have pushed out two bytes of
// data. The output function will detect
// this, and a parity byte will be
// calculated. The 3-byte block is then
// actually transmitted.
mp1->checksum_out = mp1->checksum_out ^ MP1_PADDING;
mp1Putbyte(mp1, MP1_PADDING);
} else {
// If the length was already even, we
// just update the checksum with the
// header byte and queue it.
mp1->checksum_out = mp1->checksum_out ^ header;
mp1Putbyte(mp1, header);
}
// Now we'll transmit the actual data of
// the packet. We continously increment the
// pointer address of the buffer while
// passing it to the intermediary output
// function. Everytime the interleaving
// counter reaches 3, a block will be
// transmitted.
while (length--) {
mp1->checksum_out = mp1->checksum_out ^ *buffer;
mp1Putbyte(mp1, *buffer++);
}
// Finally we write the checksum to the
// end of the packet.
mp1Putbyte(mp1, mp1->checksum_out);
// And transmit a HDLC_FLAG to signify
// end of the transmission.
kfile_putc(HDLC_FLAG, mp1->modem);
}
// This function will simply initialize
// the protocol context and allocate the
// needed memory.
void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) {
// Allocate memory for our protocol "object"
memset(mp1, 0, sizeof(*mp1));
// Set references to our modem "object" and
// a callback for when a packet has been decoded
mp1->modem = modem;
mp1->callback = callback;
}
// A handy debug function that can determine
// how much available memory we have left.
int freeRam(void) {
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}
// Following is the functions responsible
// for interleaving and deinterleaving
// blocks of data. The interleaving table
// is also included.
/////////////////////////////// ///////////////////////////////
// Interleave-table // // Interleave-table //
/////////////////////////////// ///////////////////////////////
@ -310,7 +517,7 @@ static void mp1WriteByte(MP1 *mp1, uint8_t byte) {
// //
/////////////////////////////// ///////////////////////////////
static void mp1Interleave(MP1 *mp1, uint8_t byte) { void mp1Interleave(MP1 *mp1, uint8_t byte) {
mp1->interleaveOut[mp1->interleaveCounter] = byte; mp1->interleaveOut[mp1->interleaveCounter] = byte;
mp1->interleaveCounter++; mp1->interleaveCounter++;
if (mp1->interleaveCounter == 3) { if (mp1->interleaveCounter == 3) {
@ -355,94 +562,42 @@ static void mp1Interleave(MP1 *mp1, uint8_t byte) {
} }
} }
// FIXME: Desribe additions here
static void mp1Putbyte(MP1 *mp1, uint8_t byte) {
//kfile_putc(byte, mp1->modem);
mp1Interleave(mp1, byte);
if (sendParityBlock) { void mp1Deinterleave(MP1 *mp1) {
uint8_t p = mp1ParityBlock(lastByte, byte); uint8_t a = (GET_BIT(mp1->interleaveIn[0], 1) << 7) +
//kfile_putc(p, mp1->modem); (GET_BIT(mp1->interleaveIn[1], 2) << 6) +
mp1Interleave(mp1, p); (GET_BIT(mp1->interleaveIn[2], 3) << 5) +
} (GET_BIT(mp1->interleaveIn[0], 4) << 4) +
(GET_BIT(mp1->interleaveIn[1], 5) << 3) +
(GET_BIT(mp1->interleaveIn[2], 6) << 2) +
(GET_BIT(mp1->interleaveIn[0], 7) << 1) +
(GET_BIT(mp1->interleaveIn[1], 8));
lastByte = byte; uint8_t b = (GET_BIT(mp1->interleaveIn[0], 2) << 7) +
sendParityBlock ^= true; (GET_BIT(mp1->interleaveIn[1], 3) << 6) +
} (GET_BIT(mp1->interleaveIn[2], 4) << 5) +
(GET_BIT(mp1->interleaveIn[0], 5) << 4) +
void mp1Send(MP1 *mp1, const void *_buffer, size_t length) { (GET_BIT(mp1->interleaveIn[1], 6) << 3) +
// Get the transmit data buffer (GET_BIT(mp1->interleaveIn[2], 1) << 2) +
const uint8_t *buffer = (const uint8_t *)_buffer; (GET_BIT(mp1->interleaveIn[0], 8) << 1) +
(GET_BIT(mp1->interleaveIn[2], 7));
// Initialize checksum
mp1->checksum_out = MP1_CHECKSUM_INIT; uint8_t c = (GET_BIT(mp1->interleaveIn[0], 3) << 7) +
mp1->interleaveCounter = 0; // FIXME: (GET_BIT(mp1->interleaveIn[1], 1) << 6) +
(GET_BIT(mp1->interleaveIn[2], 2) << 5) +
// Transmit the HDLC_FLAG to signify start of TX (GET_BIT(mp1->interleaveIn[0], 6) << 4) +
kfile_putc(HDLC_FLAG, mp1->modem); (GET_BIT(mp1->interleaveIn[1], 4) << 3) +
(GET_BIT(mp1->interleaveIn[2], 5) << 2) +
bool packetCompression = false; (GET_BIT(mp1->interleaveIn[1], 7) << 1) +
size_t compressedSize = compress(buffer, length); (GET_BIT(mp1->interleaveIn[2], 8));
if (compressedSize != 0 && compressedSize < length) {
// Compression saved us some space, we'll mp1->interleaveIn[0] = a;
// send the paket compressed mp1->interleaveIn[1] = b;
packetCompression = true; mp1->interleaveIn[2] = c;
memcpy(buffer, compressionBuffer, compressedSize);
length = compressedSize;
} else {
// We are not going to use compression
}
// Write header and possibly padding
// Remember we also write a header and
// a checksum. This ensures that we will
// always end our packet with a checksum
// and a parity byte.
uint8_t header = 0xf0;
if (packetCompression) header ^= MP1_HEADER_COMPRESSION;
if (length % 2 != 0) {
header ^= MP1_HEADER_PADDED;
mp1->checksum_out = mp1->checksum_out ^ header;
mp1Putbyte(mp1, header);
mp1->checksum_out = mp1->checksum_out ^ MP1_PADDING;
mp1Putbyte(mp1, MP1_PADDING);
} else {
mp1->checksum_out = mp1->checksum_out ^ header;
mp1Putbyte(mp1, header);
}
// Continously increment the pointer address
// of the buffer while passing it to the byte
// output function
while (length--) {
mp1->checksum_out = mp1->checksum_out ^ *buffer;
mp1Putbyte(mp1, *buffer++);
}
// Write checksum to end of packet
mp1Putbyte(mp1, mp1->checksum_out);
// Transmit a HDLC_FLAG to signify end of TX
kfile_putc(HDLC_FLAG, mp1->modem);
}
void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) {
// Allocate memory for our protocol "object"
memset(mp1, 0, sizeof(*mp1));
// Set references to our modem "object" and
// a callback for when a packet has been decoded
mp1->modem = modem;
mp1->callback = callback;
}
int freeRam(void) {
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
} }
// This function compresses data using
// the Heatshrink library
size_t compress(uint8_t *input, size_t length) { size_t compress(uint8_t *input, size_t length) {
heatshrink_encoder *hse = heatshrink_encoder_alloc(8, 4); heatshrink_encoder *hse = heatshrink_encoder_alloc(8, 4);
if (hse == NULL) { if (hse == NULL) {
@ -467,6 +622,8 @@ size_t compress(uint8_t *input, size_t length) {
return written; return written;
} }
// This function decompresses data using
// the Heatshrink library
size_t decompress(uint8_t *input, size_t length) { size_t decompress(uint8_t *input, size_t length) {
heatshrink_decoder *hsd = heatshrink_decoder_alloc(MP1_MAX_FRAME_LENGTH, 8, 4); heatshrink_decoder *hsd = heatshrink_decoder_alloc(MP1_MAX_FRAME_LENGTH, 8, 4);
if (hsd == NULL) { if (hsd == NULL) {

View File

@ -15,15 +15,14 @@
#define HDLC_RESET 0x7F #define HDLC_RESET 0x7F
#define AX25_ESC 0x1B #define AX25_ESC 0x1B
// Some further definitions FIXME: // We also define a few header flags and what
// to send as padding if we need to pad a
// packet. Due to forward error correction,
// packets must have an even number of bytes.
#define MP1_PADDING 0x55 #define MP1_PADDING 0x55
#define MP1_HEADER_PADDED 0x01 #define MP1_HEADER_PADDED 0x01
#define MP1_HEADER_COMPRESSION 0x02 #define MP1_HEADER_COMPRESSION 0x02
// FIXME: describe
//static uint8_t compressedData[MP1_MAX_FRAME_LENGTH-0];
static uint8_t compressionBuffer[MP1_MAX_FRAME_LENGTH+10];
// Just a forward declaration that this struct exists // Just a forward declaration that this struct exists
struct MP1Packet; struct MP1Packet;
@ -33,22 +32,21 @@ typedef void (*mp1_callback_t)(struct MP1Packet *packet);
// Struct for a protocol context // Struct for a protocol context
typedef struct MP1 { typedef struct MP1 {
uint8_t buffer[MP1_MAX_FRAME_LENGTH]; // A buffer for incoming packets uint8_t buffer[MP1_MAX_FRAME_LENGTH]; // A buffer for incoming packets
uint8_t fecBuffer[3]; // FEC buffer uint8_t fecBuffer[3]; // FEC buffer
KFile *modem; // KFile access to the modem KFile *modem; // KFile access to the modem
size_t packetLength; // Counter for received packet length size_t packetLength; // Counter for received packet length
size_t readLength; // This is the full read length, including parity bytes size_t readLength; // This is the full read length, including parity bytes
uint8_t calculatedParity; // Calculated parity for incoming data block uint8_t calculatedParity; // Calculated parity for incoming data block
mp1_callback_t callback; // The function to call when a packet has been received mp1_callback_t callback; // The function to call when a packet has been received
uint8_t checksum_in; // Rolling checksum for incoming packets uint8_t checksum_in; // Rolling checksum for incoming packets
uint8_t checksum_out; // Rolling checksum for outgoing packets uint8_t checksum_out; // Rolling checksum for outgoing packets
bool reading; // True when we have seen a HDLC flag bool reading; // True when we have seen a HDLC flag
bool escape; // We need to know if we are in an escape sequence bool escape; // We need to know if we are in an escape sequence
bool fecEscape; // fec escape long correctionsMade; // A counter for how many corrections were made to a packet
long correctionsMade; // correction count uint8_t interleaveCounter; // Keeps track of when we have received an entire interleaved block
uint8_t interleaveCounter; // interleave counter uint8_t interleaveOut[MP1_INTERLEAVE_SIZE]; // A buffer for interleaving bytes before they are sent
uint8_t interleaveOut[MP1_INTERLEAVE_SIZE]; uint8_t interleaveIn[MP1_INTERLEAVE_SIZE]; // A buffer for storing interleaved bytes before they are deinterleaved
uint8_t interleaveIn[MP1_INTERLEAVE_SIZE];
} MP1; } MP1;
// A struct encapsulating a network packet // A struct encapsulating a network packet
@ -57,6 +55,7 @@ typedef struct MP1Packet {
size_t dataLength; // The length of the received data size_t dataLength; // The length of the received data
} MP1Packet; } MP1Packet;
// Declarations of functions
void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback); void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback);
void mp1Read(MP1 *mp1, int byte); void mp1Read(MP1 *mp1, int byte);
void mp1Poll(MP1 *mp1); void mp1Poll(MP1 *mp1);
@ -65,5 +64,7 @@ void mp1Send(MP1 *mp1, const void *_buffer, size_t length);
int freeRam(void); int freeRam(void);
size_t compress(uint8_t *input, size_t length); size_t compress(uint8_t *input, size_t length);
size_t decompress(uint8_t *input, size_t length); size_t decompress(uint8_t *input, size_t length);
void mp1Deinterleave(MP1 *mp1);
void mp1Interleave(MP1 *mp1, uint8_t byte);
#endif #endif

View File

@ -1,2 +1,2 @@
#define VERS_BUILD 1197 #define VERS_BUILD 1206
#define VERS_HOST "vixen" #define VERS_HOST "vixen"