Direct serial line in/out. P-persistent CSMA. SLIP compatibility.
This commit is contained in:
parent
74542aa87a
commit
bd11c5ee83
|
@ -3,11 +3,13 @@
|
||||||
#define FSK_CFG
|
#define FSK_CFG
|
||||||
|
|
||||||
// Debug & test options
|
// Debug & test options
|
||||||
#define SERIAL_DEBUG true
|
#define SERIAL_DEBUG false
|
||||||
#define PASSALL true
|
#define PASSALL false
|
||||||
#define AUTOREPLY false
|
#define AUTOREPLY false
|
||||||
|
|
||||||
// Modem options
|
// Modem options
|
||||||
|
#define TX_MAXWAIT 2UL // How many milliseconds should pass with no
|
||||||
|
// no incoming data before it is transmitted
|
||||||
#define CONFIG_AFSK_RX_BUFLEN 64 // The size of the modems receive buffer
|
#define CONFIG_AFSK_RX_BUFLEN 64 // The size of the modems receive buffer
|
||||||
#define CONFIG_AFSK_TX_BUFLEN 64 // The size of the modems transmit buffer
|
#define CONFIG_AFSK_TX_BUFLEN 64 // The size of the modems transmit buffer
|
||||||
#define CONFIG_AFSK_DAC_SAMPLERATE 9600 // The samplerate of the DAC. Note that
|
#define CONFIG_AFSK_DAC_SAMPLERATE 9600 // The samplerate of the DAC. Note that
|
||||||
|
@ -17,7 +19,7 @@
|
||||||
#define CONFIG_AFSK_RXTIMEOUT 0 // How long a read operation from the modem
|
#define CONFIG_AFSK_RXTIMEOUT 0 // How long a read operation from the modem
|
||||||
// will wait for data before timing out.
|
// will wait for data before timing out.
|
||||||
|
|
||||||
#define CONFIG_AFSK_PREAMBLE_LEN 450UL // The length of the packet preamble in milliseconds
|
#define CONFIG_AFSK_PREAMBLE_LEN 350UL // The length of the packet preamble in milliseconds
|
||||||
#define CONFIG_AFSK_TRAILER_LEN 20UL // The length of the packet tail in milliseconds
|
#define CONFIG_AFSK_TRAILER_LEN 50UL // The length of the packet tail in milliseconds
|
||||||
|
|
||||||
#endif
|
#endif
|
|
@ -111,8 +111,10 @@ void hw_afsk_adcInit(int ch, Afsk *_modem)
|
||||||
// "ADC_vect". This lets the processor know what to do
|
// "ADC_vect". This lets the processor know what to do
|
||||||
// when all the timing and configuration we just set up
|
// when all the timing and configuration we just set up
|
||||||
// finally* ends up triggering the interrupt.
|
// finally* ends up triggering the interrupt.
|
||||||
|
bool hw_ptt_on;
|
||||||
bool hw_afsk_dac_isr;
|
bool hw_afsk_dac_isr;
|
||||||
DECLARE_ISR(ADC_vect) {
|
DECLARE_ISR(ADC_vect) {
|
||||||
|
|
||||||
TIFR1 = BV(ICF1);
|
TIFR1 = BV(ICF1);
|
||||||
|
|
||||||
// Call the routine for analysing the captured sample
|
// Call the routine for analysing the captured sample
|
||||||
|
@ -131,7 +133,7 @@ DECLARE_ISR(ADC_vect) {
|
||||||
|
|
||||||
// We also need to check if we're supposed to spit
|
// We also need to check if we're supposed to spit
|
||||||
// out some modulated data to the DAC.
|
// out some modulated data to the DAC.
|
||||||
if (hw_afsk_dac_isr)
|
if (hw_afsk_dac_isr) {
|
||||||
// If there is, it's easy to actually do so. We
|
// If there is, it's easy to actually do so. We
|
||||||
// calculate what the sample should be in the
|
// calculate what the sample should be in the
|
||||||
// DAC ISR, and apply the bitmask 11110000. This
|
// DAC ISR, and apply the bitmask 11110000. This
|
||||||
|
@ -143,12 +145,18 @@ DECLARE_ISR(ADC_vect) {
|
||||||
// by the PORTD register. This is the PTT pin
|
// by the PORTD register. This is the PTT pin
|
||||||
// which tells the radio to open it transmitter.
|
// which tells the radio to open it transmitter.
|
||||||
PORTD = (afsk_dac_isr(modem) & 0xF0) | BV(3);
|
PORTD = (afsk_dac_isr(modem) & 0xF0) | BV(3);
|
||||||
else
|
} else {
|
||||||
// If we're not supposed to transmit anything, we
|
// If we're not supposed to transmit anything, we
|
||||||
// keep quiet by continously sending 128, which
|
// keep quiet by continously sending 128, which
|
||||||
// when converted to an AC waveform by the DAC,
|
// when converted to an AC waveform by the DAC,
|
||||||
// equates to a steady, unchanging 0 volts.
|
// equates to a steady, unchanging 0 volts.
|
||||||
PORTD = 128;
|
if (hw_ptt_on) {
|
||||||
|
PORTD = 136;
|
||||||
|
} else {
|
||||||
|
PORTD = 128;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -53,4 +53,7 @@ void hw_afsk_dacInit(int ch, struct Afsk *_ctx);
|
||||||
#define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; PORTD |= BV(3); hw_afsk_dac_isr = true; } while (0)
|
#define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; PORTD |= BV(3); hw_afsk_dac_isr = true; } while (0)
|
||||||
#define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; PORTD &= ~BV(3); hw_afsk_dac_isr = false; } while (0)
|
#define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; PORTD &= ~BV(3); hw_afsk_dac_isr = false; } while (0)
|
||||||
|
|
||||||
|
#define AFSK_HW_PTT_ON() do { extern bool hw_ptt_on; hw_ptt_on = true; } while (0)
|
||||||
|
#define AFSK_HW_PTT_OFF() do { extern bool hw_ptt_on; hw_ptt_on = false; } while (0)
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
113
Modem/main.c
113
Modem/main.c
|
@ -33,9 +33,10 @@ static Serial ser; // Declare a serial interface struct
|
||||||
#define TEST_TX_INTERVAL 10000L
|
#define TEST_TX_INTERVAL 10000L
|
||||||
|
|
||||||
|
|
||||||
static uint8_t serialBuffer[MP1_MAX_FRAME_LENGTH]; // This is a buffer for incoming serial data
|
static uint8_t serialBuffer[MP1_MAX_DATA_SIZE]; // This is a buffer for incoming serial data
|
||||||
|
|
||||||
static int sbyte; // For holding byte read from serial port
|
static int sbyte; // For holding byte read from serial port
|
||||||
static size_t serialLen = 0; // Counter for counting length of data from serial
|
static size_t serialLen = 0; // Counter for counting length of data from serial
|
||||||
static bool sertx = false; // Flag signifying whether it's time to send data
|
static bool sertx = false; // Flag signifying whether it's time to send data
|
||||||
// Received on the serial port.
|
// Received on the serial port.
|
||||||
|
|
||||||
|
@ -47,13 +48,19 @@ static bool sertx = false; // Flag signifying whether it's time to send da
|
||||||
// so we can process each packet as they are decoded.
|
// so we can process each packet as they are decoded.
|
||||||
// Right now it just prints the packet to the serial port.
|
// Right now it just prints the packet to the serial port.
|
||||||
static void mp1Callback(struct MP1Packet *packet) {
|
static void mp1Callback(struct MP1Packet *packet) {
|
||||||
kfile_printf(&ser.fd, "%.*s\n", packet->dataLength, packet->data);
|
if (SERIAL_DEBUG) {
|
||||||
|
kfile_printf(&ser.fd, "%.*s\n", packet->dataLength, packet->data);
|
||||||
|
|
||||||
if (AUTOREPLY && packet->data[0]-128 == 'R' && packet->data[1]-128 == 'Q') {
|
if (AUTOREPLY && packet->data[0]-128 == 'R' && packet->data[1]-128 == 'Q') {
|
||||||
timer_delay(1000);
|
timer_delay(1000);
|
||||||
|
|
||||||
uint8_t output[sizeof(TEST_PACKET)] = TEST_PACKET;
|
uint8_t output[sizeof(TEST_PACKET)] = TEST_PACKET;
|
||||||
mp1Send(&mp1, output, sizeof(TEST_PACKET));
|
mp1Send(&mp1, output, sizeof(TEST_PACKET));
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (unsigned long i = 0; i < packet->dataLength; i++) {
|
||||||
|
kfile_putc(packet->data[i], &ser.fd);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -69,7 +76,7 @@ static void init(void)
|
||||||
// Initialize serial comms on UART0,
|
// Initialize serial comms on UART0,
|
||||||
// which is the hardware serial on arduino
|
// which is the hardware serial on arduino
|
||||||
ser_init(&ser, SER_UART0);
|
ser_init(&ser, SER_UART0);
|
||||||
ser_setbaudrate(&ser, 115200);
|
ser_setbaudrate(&ser, 9600);
|
||||||
|
|
||||||
// For some reason BertOS sets the serial
|
// For some reason BertOS sets the serial
|
||||||
// to 7 bit characters by default. We set
|
// to 7 bit characters by default. We set
|
||||||
|
@ -99,50 +106,82 @@ int main(void)
|
||||||
mp1Poll(&mp1);
|
mp1Poll(&mp1);
|
||||||
|
|
||||||
|
|
||||||
// We then read a byte from the serial port.
|
|
||||||
// Notice that we use "_nowait" since we can't
|
|
||||||
// have this blocking execution until a byte
|
|
||||||
// comes in.
|
|
||||||
sbyte = ser_getchar_nowait(&ser);
|
|
||||||
// If there was actually some data waiting for us
|
// If there was actually some data waiting for us
|
||||||
// there, let's se what it tastes like :)
|
// there, let's se what it tastes like :)
|
||||||
if (sbyte != EOF) {
|
if (ser_available(&ser)) {
|
||||||
// If we have not yet surpassed the maximum frame length
|
// We then read a byte from the serial port.
|
||||||
// and the byte is not a "transmit" (newline) character,
|
// Notice that we use "_nowait" since we can't
|
||||||
// we should store it for transmission.
|
// have this blocking execution until a byte
|
||||||
if ((serialLen < MP1_MAX_FRAME_LENGTH) && (sbyte != 10)) {
|
// comes in.
|
||||||
// Put the read byte into the buffer;
|
sbyte = ser_getchar_nowait(&ser);
|
||||||
serialBuffer[serialLen] = sbyte;
|
|
||||||
// Increment the read length counter
|
// If SERIAL_DEBUG is specified we'll handle
|
||||||
serialLen++;
|
// serial data as direct human input and only
|
||||||
|
// transmit when we get a LF character
|
||||||
|
if (SERIAL_DEBUG) {
|
||||||
|
// If we have not yet surpassed the maximum frame length
|
||||||
|
// and the byte is not a "transmit" (newline) character,
|
||||||
|
// we should store it for transmission.
|
||||||
|
if ((serialLen < MP1_MAX_DATA_SIZE) && (sbyte != 10)) {
|
||||||
|
// Put the read byte into the buffer;
|
||||||
|
serialBuffer[serialLen] = sbyte;
|
||||||
|
// Increment the read length counter
|
||||||
|
serialLen++;
|
||||||
|
} else {
|
||||||
|
// If one of the above conditions were actually the
|
||||||
|
// case, it means we have to transmit, se we set
|
||||||
|
// transmission flag to true.
|
||||||
|
sertx = true;
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
// If one of the above conditions were actually the
|
// Otherwise we assume the modem is running
|
||||||
// case, it means we have to transmit, se we set
|
// in automated mode, and we push out data
|
||||||
// transmission flag to true.
|
// as it becomes available. We either transmit
|
||||||
|
// immediately when the max frame length has
|
||||||
|
// been reached, or when we get no input for
|
||||||
|
// a certain amount of time.
|
||||||
|
|
||||||
|
if (serialLen < MP1_MAX_DATA_SIZE-1) {
|
||||||
|
// Put the read byte into the buffer;
|
||||||
|
serialBuffer[serialLen] = sbyte;
|
||||||
|
// Increment the read length counter
|
||||||
|
serialLen++;
|
||||||
|
} else {
|
||||||
|
// If max frame length has been reached
|
||||||
|
// we need to transmit.
|
||||||
|
serialBuffer[serialLen] = sbyte;
|
||||||
|
serialLen++;
|
||||||
|
sertx = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
start = timer_clock();
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (!SERIAL_DEBUG && serialLen > 0 && timer_clock() - start > ms_to_ticks(TX_MAXWAIT)) {
|
||||||
sertx = true;
|
sertx = true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Check whether we should send data in our serial buffer
|
// Check whether we should send data in our serial buffer
|
||||||
if (sertx) {
|
if (sertx) {
|
||||||
// If we should, pass the buffer to the protocol's
|
// Wait until incoming packets are done
|
||||||
// send function.
|
if (!mp1CarrierSense(&mp1)) {
|
||||||
|
// And then send the data
|
||||||
mp1Send(&mp1, serialBuffer, serialLen);
|
mp1Send(&mp1, serialBuffer, serialLen);
|
||||||
|
|
||||||
// Reset the transmission flag and length counter
|
// Reset the transmission flag and length counter
|
||||||
sertx = false;
|
sertx = false;
|
||||||
serialLen = 0;
|
serialLen = 0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Periodically send test data if we should do so
|
// Periodically send test data if we should do so
|
||||||
if (TEST_TX && timer_clock() - start > ms_to_ticks(TEST_TX_INTERVAL)) {
|
if (SERIAL_DEBUG && TEST_TX && timer_clock() - start > ms_to_ticks(TEST_TX_INTERVAL)) {
|
||||||
// Reset the timer counter;
|
// Reset the timer counter;
|
||||||
start = timer_clock();
|
start = timer_clock();
|
||||||
// And send a test packet!
|
// And send a test packet!
|
||||||
uint8_t output[sizeof(TEST_PACKET)] = TEST_PACKET;
|
uint8_t output[sizeof(TEST_PACKET)] = TEST_PACKET;
|
||||||
mp1Send(&mp1, output, sizeof(TEST_PACKET));
|
mp1Send(&mp1, output, sizeof(TEST_PACKET));
|
||||||
kprintf("TX done\n");
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return 0;
|
return 0;
|
||||||
|
|
|
@ -1,8 +1,10 @@
|
||||||
#include "mp1.h"
|
#include "mp1.h"
|
||||||
#include "hardware.h"
|
#include "hardware.h"
|
||||||
#include "config.h"
|
#include "config.h"
|
||||||
|
#include <stdlib.h> // Used for random
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
#include <drv/ser.h>
|
#include <drv/ser.h>
|
||||||
|
#include <drv/timer.h> // Timer driver from BertOS
|
||||||
|
|
||||||
#include "compression/heatshrink_encoder.h"
|
#include "compression/heatshrink_encoder.h"
|
||||||
#include "compression/heatshrink_decoder.h"
|
#include "compression/heatshrink_decoder.h"
|
||||||
|
@ -51,7 +53,7 @@ static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) {
|
||||||
return parity;
|
return parity;
|
||||||
}
|
}
|
||||||
|
|
||||||
// This deode function retrieves the buffer of
|
// This decode function retrieves the buffer of
|
||||||
// received, deinterleaved and error-corrected
|
// received, deinterleaved and error-corrected
|
||||||
// bytes, inspects the header and determines
|
// bytes, inspects the header and determines
|
||||||
// whether there is padding to be removed, and
|
// whether there is padding to be removed, and
|
||||||
|
@ -79,7 +81,7 @@ static void mp1Decode(MP1 *mp1) {
|
||||||
|
|
||||||
// Set the payload length of the packet to the counted
|
// Set the payload length of the packet to the counted
|
||||||
// length minus 1, so we remove the checksum
|
// length minus 1, so we remove the checksum
|
||||||
packet.dataLength = mp1->packetLength - 2 - (header & 0x01)*padding;
|
packet.dataLength = mp1->packetLength - 2 - (header & MP1_HEADER_PADDED)*padding;
|
||||||
|
|
||||||
// Check if we have received a compressed packet
|
// Check if we have received a compressed packet
|
||||||
if (header & MP1_HEADER_COMPRESSION) {
|
if (header & MP1_HEADER_COMPRESSION) {
|
||||||
|
@ -89,11 +91,20 @@ static void mp1Decode(MP1 *mp1) {
|
||||||
size_t decompressedSize = decompress(buffer, packet.dataLength);
|
size_t decompressedSize = decompress(buffer, packet.dataLength);
|
||||||
if (SERIAL_DEBUG) kprintf("[DS=%d]", decompressedSize);
|
if (SERIAL_DEBUG) kprintf("[DS=%d]", decompressedSize);
|
||||||
packet.dataLength = decompressedSize;
|
packet.dataLength = decompressedSize;
|
||||||
memcpy(buffer, compressionBuffer, decompressedSize);
|
memcpy(mp1->buffer, compressionBuffer, decompressedSize);
|
||||||
|
} else {
|
||||||
|
// If the packet was not compressed, we shift
|
||||||
|
// the data in our buffer back down to the actual
|
||||||
|
// beginning of the buffer array, since we incremented
|
||||||
|
// the pointer address for removing the header and
|
||||||
|
// padding.
|
||||||
|
for (unsigned long i = 0; i < packet.dataLength; i++) {
|
||||||
|
mp1->buffer[i] = buffer[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Set the data field of the packet to our buffer
|
// Set the data field of the packet to our buffer
|
||||||
packet.data = buffer;
|
packet.data = mp1->buffer;
|
||||||
|
|
||||||
// If a callback have been specified, let's
|
// If a callback have been specified, let's
|
||||||
// call it and pass the decoded packet
|
// call it and pass the decoded packet
|
||||||
|
@ -112,7 +123,9 @@ void mp1Poll(MP1 *mp1) {
|
||||||
|
|
||||||
// Read bytes from the modem until we reach EOF
|
// Read bytes from the modem until we reach EOF
|
||||||
while ((byte = kfile_getc(mp1->modem)) != EOF) {
|
while ((byte = kfile_getc(mp1->modem)) != EOF) {
|
||||||
// We have a byte, increment our read counter
|
// We read something from the modem, so we
|
||||||
|
// set the settleTimer
|
||||||
|
mp1->settleTimer = timer_clock();
|
||||||
|
|
||||||
/////////////////////////////////////////////
|
/////////////////////////////////////////////
|
||||||
// This following block handles forward //
|
// This following block handles forward //
|
||||||
|
@ -127,6 +140,7 @@ void mp1Poll(MP1 *mp1) {
|
||||||
|
|
||||||
|
|
||||||
if ((mp1->reading && (byte != AX25_ESC )) || (mp1->reading && (mp1->escape && (byte == AX25_ESC || byte == HDLC_FLAG || byte == HDLC_RESET)))) {
|
if ((mp1->reading && (byte != AX25_ESC )) || (mp1->reading && (mp1->escape && (byte == AX25_ESC || byte == HDLC_FLAG || byte == HDLC_RESET)))) {
|
||||||
|
// We have a byte, increment our read counter
|
||||||
mp1->readLength++;
|
mp1->readLength++;
|
||||||
|
|
||||||
// Check if we have read three bytes. If we
|
// Check if we have read three bytes. If we
|
||||||
|
@ -269,6 +283,10 @@ void mp1Poll(MP1 *mp1) {
|
||||||
// frame length, which means the flag signifies
|
// frame length, which means the flag signifies
|
||||||
// the end of the packet. Pass control to the
|
// the end of the packet. Pass control to the
|
||||||
// decoder.
|
// decoder.
|
||||||
|
//
|
||||||
|
// We also set the settle timer to indicate
|
||||||
|
// the time the frame completed reading.
|
||||||
|
mp1->settleTimer = timer_clock();
|
||||||
if ((mp1->checksum_in & 0xff) == 0x00) {
|
if ((mp1->checksum_in & 0xff) == 0x00) {
|
||||||
if (SERIAL_DEBUG) kprintf("[CHK-OK] [C=%d] ", mp1->correctionsMade);
|
if (SERIAL_DEBUG) kprintf("[CHK-OK] [C=%d] ", mp1->correctionsMade);
|
||||||
mp1Decode(mp1);
|
mp1Decode(mp1);
|
||||||
|
@ -322,7 +340,6 @@ void mp1Poll(MP1 *mp1) {
|
||||||
// byte in the buffer. When we have collected 3
|
// byte in the buffer. When we have collected 3
|
||||||
// bytes, they will be processed by the error
|
// bytes, they will be processed by the error
|
||||||
// correction part above.
|
// correction part above.
|
||||||
|
|
||||||
mp1->buffer[mp1->packetLength++] = byte;
|
mp1->buffer[mp1->packetLength++] = byte;
|
||||||
} else {
|
} else {
|
||||||
// If not, we have a problem: The buffer has overrun
|
// If not, we have a problem: The buffer has overrun
|
||||||
|
@ -381,6 +398,13 @@ static void mp1Putbyte(MP1 *mp1, uint8_t byte) {
|
||||||
// to be transmitted, and structures it into
|
// to be transmitted, and structures it into
|
||||||
// a valid packet.
|
// a valid packet.
|
||||||
void mp1Send(MP1 *mp1, void *_buffer, size_t length) {
|
void mp1Send(MP1 *mp1, void *_buffer, size_t length) {
|
||||||
|
// Open transmitter and wait for MP1_TXDELAY msecs
|
||||||
|
AFSK_HW_PTT_ON();
|
||||||
|
ticks_t start = timer_clock();
|
||||||
|
while (timer_clock() - start < ms_to_ticks(MP1_TXDELAY)) {
|
||||||
|
cpu_relax();
|
||||||
|
}
|
||||||
|
|
||||||
// Get the transmit data buffer
|
// Get the transmit data buffer
|
||||||
uint8_t *buffer = (uint8_t *)_buffer;
|
uint8_t *buffer = (uint8_t *)_buffer;
|
||||||
|
|
||||||
|
@ -493,6 +517,9 @@ void mp1Send(MP1 *mp1, void *_buffer, size_t length) {
|
||||||
// And transmit a HDLC_FLAG to signify
|
// And transmit a HDLC_FLAG to signify
|
||||||
// end of the transmission.
|
// end of the transmission.
|
||||||
kfile_putc(HDLC_FLAG, mp1->modem);
|
kfile_putc(HDLC_FLAG, mp1->modem);
|
||||||
|
|
||||||
|
// Turn off manual PTT
|
||||||
|
AFSK_HW_PTT_OFF();
|
||||||
}
|
}
|
||||||
|
|
||||||
// This function will simply initialize
|
// This function will simply initialize
|
||||||
|
@ -505,6 +532,34 @@ void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) {
|
||||||
// a callback for when a packet has been decoded
|
// a callback for when a packet has been decoded
|
||||||
mp1->modem = modem;
|
mp1->modem = modem;
|
||||||
mp1->callback = callback;
|
mp1->callback = callback;
|
||||||
|
mp1->settleTimer = timer_clock();
|
||||||
|
mp1->randomSeed = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// A simple form of P-persistent CSMA.
|
||||||
|
// Everytime we have heard activity
|
||||||
|
// on the channel, we wait at least
|
||||||
|
// MP1_SETTLE_TIME milliseconds after the
|
||||||
|
// activity has ceased. We then pick a random
|
||||||
|
// number, and if it is less than
|
||||||
|
// MP1_P_PERSISTENCE, we transmit.
|
||||||
|
bool mp1CarrierSense(MP1 *mp1) {
|
||||||
|
if (mp1->randomSeed == 0) {
|
||||||
|
mp1->randomSeed = timer_clock();
|
||||||
|
srand(mp1->randomSeed);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (timer_clock() - mp1->settleTimer > ms_to_ticks(MP1_SETTLE_TIME)) {
|
||||||
|
uint8_t r = rand() % 255;
|
||||||
|
if (r < MP1_P_PERSISTENCE) {
|
||||||
|
return false;
|
||||||
|
} else {
|
||||||
|
mp1->settleTimer = timer_clock();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// A handy debug function that can determine
|
// A handy debug function that can determine
|
||||||
|
|
|
@ -6,11 +6,20 @@
|
||||||
|
|
||||||
// Frame sizing & checksum
|
// Frame sizing & checksum
|
||||||
#define MP1_INTERLEAVE_SIZE 12
|
#define MP1_INTERLEAVE_SIZE 12
|
||||||
|
#define MP1_MAX_FRAME_LENGTH 22 * MP1_INTERLEAVE_SIZE
|
||||||
|
#define MP1_HEADER_SIZE 1
|
||||||
|
#define MP1_CHECKSUM_SIZE 1
|
||||||
|
#define MP1_MAX_DATA_SIZE MP1_MAX_FRAME_LENGTH - MP1_HEADER_SIZE - MP1_CHECKSUM_SIZE
|
||||||
#define MP1_MIN_FRAME_LENGTH MP1_INTERLEAVE_SIZE
|
#define MP1_MIN_FRAME_LENGTH MP1_INTERLEAVE_SIZE
|
||||||
#define MP1_DATA_BLOCK_SIZE ((MP1_INTERLEAVE_SIZE/3)*2)
|
#define MP1_DATA_BLOCK_SIZE ((MP1_INTERLEAVE_SIZE/3)*2)
|
||||||
#define MP1_MAX_FRAME_LENGTH 250
|
|
||||||
#define MP1_CHECKSUM_INIT 0xAA
|
#define MP1_CHECKSUM_INIT 0xAA
|
||||||
|
|
||||||
|
// These two parameters are used for
|
||||||
|
// P-persistent CSMA
|
||||||
|
#define MP1_SETTLE_TIME 100UL // The minimum wait time before considering sending
|
||||||
|
#define MP1_P_PERSISTENCE 85UL // The probability (between 0 and 255) for sending
|
||||||
|
#define MP1_TXDELAY 150UL // Delay between turning on the transmitter and sending
|
||||||
|
|
||||||
// We need to know some basic HDLC flag bytes
|
// We need to know some basic HDLC flag bytes
|
||||||
#define HDLC_FLAG 0x7E
|
#define HDLC_FLAG 0x7E
|
||||||
#define HDLC_RESET 0x7F
|
#define HDLC_RESET 0x7F
|
||||||
|
@ -44,10 +53,12 @@ typedef struct MP1 {
|
||||||
uint8_t checksum_out; // Rolling checksum for outgoing packets
|
uint8_t checksum_out; // Rolling checksum for outgoing packets
|
||||||
bool reading; // True when we have seen a HDLC flag
|
bool reading; // True when we have seen a HDLC flag
|
||||||
bool escape; // We need to know if we are in an escape sequence
|
bool escape; // We need to know if we are in an escape sequence
|
||||||
|
ticks_t settleTimer; // Timer used for carrier sense settling
|
||||||
long correctionsMade; // A counter for how many corrections were made to a packet
|
long correctionsMade; // A counter for how many corrections were made to a packet
|
||||||
uint8_t interleaveCounter; // Keeps track of when we have received an entire interleaved block
|
uint8_t interleaveCounter; // Keeps track of when we have received an entire interleaved block
|
||||||
uint8_t interleaveOut[MP1_INTERLEAVE_SIZE]; // A buffer for interleaving bytes before they are sent
|
uint8_t interleaveOut[MP1_INTERLEAVE_SIZE]; // A buffer for interleaving bytes before they are sent
|
||||||
uint8_t interleaveIn[MP1_INTERLEAVE_SIZE]; // A buffer for storing interleaved bytes before they are deinterleaved
|
uint8_t interleaveIn[MP1_INTERLEAVE_SIZE]; // A buffer for storing interleaved bytes before they are deinterleaved
|
||||||
|
uint8_t randomSeed; // A seed for the pseudo-random number generator
|
||||||
} MP1;
|
} MP1;
|
||||||
|
|
||||||
// A struct encapsulating a network packet
|
// A struct encapsulating a network packet
|
||||||
|
@ -61,6 +72,7 @@ void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback);
|
||||||
void mp1Read(MP1 *mp1, int byte);
|
void mp1Read(MP1 *mp1, int byte);
|
||||||
void mp1Poll(MP1 *mp1);
|
void mp1Poll(MP1 *mp1);
|
||||||
void mp1Send(MP1 *mp1, void *_buffer, size_t length);
|
void mp1Send(MP1 *mp1, void *_buffer, size_t length);
|
||||||
|
bool mp1CarrierSense(MP1 *mp1);
|
||||||
|
|
||||||
int freeRam(void);
|
int freeRam(void);
|
||||||
size_t compress(uint8_t *input, size_t length);
|
size_t compress(uint8_t *input, size_t length);
|
||||||
|
|
|
@ -189,6 +189,14 @@ int ser_getchar_nowait(struct Serial *fd)
|
||||||
return (int)(unsigned char)fifo_pop_locked(&fd->rxfifo);
|
return (int)(unsigned char)fifo_pop_locked(&fd->rxfifo);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool ser_available(struct Serial *fd) {
|
||||||
|
if (fifo_isempty_locked(&fd->rxfifo)) {
|
||||||
|
return false;
|
||||||
|
} else {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -197,6 +197,7 @@ void ser_setparity(struct Serial *fd, int parity);
|
||||||
void ser_settimeouts(struct Serial *fd, mtime_t rxtimeout, mtime_t txtimeout);
|
void ser_settimeouts(struct Serial *fd, mtime_t rxtimeout, mtime_t txtimeout);
|
||||||
void ser_resync(struct Serial *fd, mtime_t delay);
|
void ser_resync(struct Serial *fd, mtime_t delay);
|
||||||
int ser_getchar_nowait(struct Serial *fd);
|
int ser_getchar_nowait(struct Serial *fd);
|
||||||
|
bool ser_available(struct Serial *fd);
|
||||||
|
|
||||||
void ser_purgeRx(struct Serial *fd);
|
void ser_purgeRx(struct Serial *fd);
|
||||||
void ser_purgeTx(struct Serial *fd);
|
void ser_purgeTx(struct Serial *fd);
|
||||||
|
|
|
@ -1,2 +1,2 @@
|
||||||
#define VERS_BUILD 1401
|
#define VERS_BUILD 1560
|
||||||
#define VERS_HOST "shard"
|
#define VERS_HOST "shard"
|
||||||
|
|
Loading…
Reference in New Issue