Reworked AFSK Struct

This commit is contained in:
Mark Qvist 2014-04-03 23:22:15 +02:00
parent 854d0abbe5
commit e76216875e
4 changed files with 115 additions and 153 deletions

View File

@ -138,13 +138,7 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo)
} }
/**
* ADC ISR callback.
* This function has to be called by the ADC ISR when a sample of the configured
* channel is available.
* \param af Afsk context to operate on.
* \param curr_sample current sample from the ADC.
*/
void afsk_adc_isr(Afsk *af, int8_t curr_sample) void afsk_adc_isr(Afsk *af, int8_t curr_sample)
{ {
AFSK_STROBE_ON(); AFSK_STROBE_ON();
@ -165,63 +159,63 @@ void afsk_adc_isr(Afsk *af, int8_t curr_sample)
* through the CONFIG_AFSK_FILTER config variable. * through the CONFIG_AFSK_FILTER config variable.
*/ */
af->iir_x[0] = af->iir_x[1]; af->iirX[0] = af->iirX[1];
#if (CONFIG_AFSK_FILTER == AFSK_BUTTERWORTH) #if (CONFIG_AFSK_FILTER == AFSK_BUTTERWORTH)
af->iir_x[1] = ((int8_t)fifo_pop(&af->delay_fifo) * curr_sample) >> 2; af->iirX[1] = ((int8_t)fifo_pop(&af->delayFifo) * curr_sample) >> 2;
//af->iir_x[1] = ((int8_t)fifo_pop(&af->delay_fifo) * curr_sample) / 6.027339492; //af->iirX[1] = ((int8_t)fifo_pop(&af->delayFifo) * curr_sample) / 6.027339492;
#elif (CONFIG_AFSK_FILTER == AFSK_CHEBYSHEV) #elif (CONFIG_AFSK_FILTER == AFSK_CHEBYSHEV)
af->iir_x[1] = ((int8_t)fifo_pop(&af->delay_fifo) * curr_sample) >> 2; af->iirX[1] = ((int8_t)fifo_pop(&af->delayFifo) * curr_sample) >> 2;
//af->iir_x[1] = ((int8_t)fifo_pop(&af->delay_fifo) * curr_sample) / 3.558147322; //af->iirX[1] = ((int8_t)fifo_pop(&af->delayFifo) * curr_sample) / 3.558147322;
#else #else
#error Filter type not found! #error Filter type not found!
#endif #endif
af->iir_y[0] = af->iir_y[1]; af->iirY[0] = af->iirY[1];
#if CONFIG_AFSK_FILTER == AFSK_BUTTERWORTH #if CONFIG_AFSK_FILTER == AFSK_BUTTERWORTH
/* /*
* This strange sum + shift is an optimization for af->iir_y[0] * 0.668. * This strange sum + shift is an optimization for af->iirY[0] * 0.668.
* iir * 0.668 ~= (iir * 21) / 32 = * iir * 0.668 ~= (iir * 21) / 32 =
* = (iir * 16) / 32 + (iir * 4) / 32 + iir / 32 = * = (iir * 16) / 32 + (iir * 4) / 32 + iir / 32 =
* = iir / 2 + iir / 8 + iir / 32 = * = iir / 2 + iir / 8 + iir / 32 =
* = iir >> 1 + iir >> 3 + iir >> 5 * = iir >> 1 + iir >> 3 + iir >> 5
*/ */
af->iir_y[1] = af->iir_x[0] + af->iir_x[1] + (af->iir_y[0] >> 1) + (af->iir_y[0] >> 3) + (af->iir_y[0] >> 5); af->iirY[1] = af->iirX[0] + af->iirX[1] + (af->iirY[0] >> 1) + (af->iirY[0] >> 3) + (af->iirY[0] >> 5);
//af->iir_y[1] = af->iir_x[0] + af->iir_x[1] + af->iir_y[0] * 0.6681786379; //af->iirY[1] = af->iirX[0] + af->iirX[1] + af->iirY[0] * 0.6681786379;
#elif CONFIG_AFSK_FILTER == AFSK_CHEBYSHEV #elif CONFIG_AFSK_FILTER == AFSK_CHEBYSHEV
/* /*
* This should be (af->iir_y[0] * 0.438) but * This should be (af->iirY[0] * 0.438) but
* (af->iir_y[0] >> 1) is a faster approximation :-) * (af->iirY[0] >> 1) is a faster approximation :-)
*/ */
af->iir_y[1] = af->iir_x[0] + af->iir_x[1] + (af->iir_y[0] >> 1); af->iirY[1] = af->iirX[0] + af->iirX[1] + (af->iirY[0] >> 1);
//af->iir_y[1] = af->iir_x[0] + af->iir_x[1] + af->iir_y[0] * 0.4379097269; //af->iirY[1] = af->iirX[0] + af->iirX[1] + af->iirY[0] * 0.4379097269;
#endif #endif
/* Save this sampled bit in a delay line */ /* Save this sampled bit in a delay line */
af->sampled_bits <<= 1; af->sampledBits <<= 1;
af->sampled_bits |= (af->iir_y[1] > 0) ? 1 : 0; af->sampledBits |= (af->iirY[1] > 0) ? 1 : 0;
/* Store current ADC sample in the af->delay_fifo */ /* Store current ADC sample in the af->delayFifo */
fifo_push(&af->delay_fifo, curr_sample); fifo_push(&af->delayFifo, curr_sample);
/* If there is an edge, adjust phase sampling */ /* If there is an edge, adjust phase sampling */
if (EDGE_FOUND(af->sampled_bits)) if (EDGE_FOUND(af->sampledBits))
{ {
if (af->curr_phase < PHASE_THRES) if (af->currentPhase < PHASE_THRES)
af->curr_phase += PHASE_INC; af->currentPhase += PHASE_INC;
else else
af->curr_phase -= PHASE_INC; af->currentPhase -= PHASE_INC;
} }
af->curr_phase += PHASE_BIT; af->currentPhase += PHASE_BIT;
/* sample the bit */ /* sample the bit */
if (af->curr_phase >= PHASE_MAX) if (af->currentPhase >= PHASE_MAX)
{ {
af->curr_phase %= PHASE_MAX; af->currentPhase %= PHASE_MAX;
/* Shift 1 position in the shift register of the found bits */ /* Shift 1 position in the shift register of the found bits */
af->found_bits <<= 1; af->actualBits <<= 1;
/* /*
* Determine bit value by reading the last 3 sampled bits. * Determine bit value by reading the last 3 sampled bits.
@ -230,19 +224,19 @@ void afsk_adc_isr(Afsk *af, int8_t curr_sample)
* This algorithm presumes that there are 8 samples per bit. * This algorithm presumes that there are 8 samples per bit.
*/ */
STATIC_ASSERT(SAMPLESPERBIT == 8); STATIC_ASSERT(SAMPLESPERBIT == 8);
uint8_t bits = af->sampled_bits & 0x07; uint8_t bits = af->sampledBits & 0x07;
if (bits == 0x07 // 111, 3 bits set to 1 if (bits == 0x07 // 111, 3 bits set to 1
|| bits == 0x06 // 110, 2 bits || bits == 0x06 // 110, 2 bits
|| bits == 0x05 // 101, 2 bits || bits == 0x05 // 101, 2 bits
|| bits == 0x03 // 011, 2 bits || bits == 0x03 // 011, 2 bits
) )
af->found_bits |= 1; af->actualBits |= 1;
/* /*
* NRZI coding: if 2 consecutive bits have the same value * NRZI coding: if 2 consecutive bits have the same value
* a 1 is received, otherwise it's a 0. * a 1 is received, otherwise it's a 0.
*/ */
if (!hdlcParse(&af->hdlc, !EDGE_FOUND(af->found_bits), &af->rx_fifo)) if (!hdlcParse(&af->hdlc, !EDGE_FOUND(af->actualBits), &af->rxFifo))
af->status |= AFSK_RXFIFO_OVERRUN; af->status |= AFSK_RXFIFO_OVERRUN;
} }
@ -254,14 +248,14 @@ static void afsk_txStart(Afsk *af)
{ {
if (!af->sending) if (!af->sending)
{ {
af->phase_inc = MARK_INC; af->phaseInc = MARK_INC;
af->phase_acc = 0; af->phaseAcc = 0;
af->stuff_cnt = 0; af->bitstuffCount = 0;
af->sending = true; af->sending = true;
af->preamble_len = DIV_ROUND(CONFIG_AFSK_PREAMBLE_LEN * BITRATE, 8000); af->preambleLength = DIV_ROUND(CONFIG_AFSK_PREAMBLE_LEN * BITRATE, 8000);
AFSK_DAC_IRQ_START(af->dac_ch); AFSK_DAC_IRQ_START(af->dacPin);
} }
ATOMIC(af->trailer_len = DIV_ROUND(CONFIG_AFSK_TRAILER_LEN * BITRATE, 8000)); ATOMIC(af->tailLength = DIV_ROUND(CONFIG_AFSK_TRAILER_LEN * BITRATE, 8000));
} }
#define BIT_STUFF_LEN 5 #define BIT_STUFF_LEN 5
@ -282,14 +276,14 @@ uint8_t afsk_dac_isr(Afsk *af)
AFSK_STROBE_ON(); AFSK_STROBE_ON();
/* Check if we are at a start of a sample cycle */ /* Check if we are at a start of a sample cycle */
if (af->sample_count == 0) if (af->sampleIndex == 0)
{ {
if (af->tx_bit == 0) if (af->txBit == 0)
{ {
/* We have just finished transimitting a char, get a new one. */ /* We have just finished transimitting a char, get a new one. */
if (fifo_isempty(&af->tx_fifo) && af->trailer_len == 0) if (fifo_isempty(&af->txFifo) && af->tailLength == 0)
{ {
AFSK_DAC_IRQ_STOP(af->dac_ch); AFSK_DAC_IRQ_STOP(af->dacPin);
af->sending = false; af->sending = false;
AFSK_STROBE_OFF(); AFSK_STROBE_OFF();
return 0; return 0;
@ -300,58 +294,58 @@ uint8_t afsk_dac_isr(Afsk *af)
* If we have just finished sending an unstuffed byte, * If we have just finished sending an unstuffed byte,
* reset bitstuff counter. * reset bitstuff counter.
*/ */
if (!af->bit_stuff) if (!af->bitStuff)
af->stuff_cnt = 0; af->bitstuffCount = 0;
af->bit_stuff = true; af->bitStuff = true;
/* /*
* Handle preamble and trailer * Handle preamble and trailer
*/ */
if (af->preamble_len == 0) if (af->preambleLength == 0)
{ {
if (fifo_isempty(&af->tx_fifo)) if (fifo_isempty(&af->txFifo))
{ {
af->trailer_len--; af->tailLength--;
af->curr_out = HDLC_FLAG; af->currentOutputByte = HDLC_FLAG;
} }
else else
af->curr_out = fifo_pop(&af->tx_fifo); af->currentOutputByte = fifo_pop(&af->txFifo);
} }
else else
{ {
af->preamble_len--; af->preambleLength--;
af->curr_out = HDLC_FLAG; af->currentOutputByte = HDLC_FLAG;
} }
/* Handle char escape */ /* Handle char escape */
if (af->curr_out == AX25_ESC) if (af->currentOutputByte == AX25_ESC)
{ {
if (fifo_isempty(&af->tx_fifo)) if (fifo_isempty(&af->txFifo))
{ {
AFSK_DAC_IRQ_STOP(af->dac_ch); AFSK_DAC_IRQ_STOP(af->dacPin);
af->sending = false; af->sending = false;
AFSK_STROBE_OFF(); AFSK_STROBE_OFF();
return 0; return 0;
} }
else else
af->curr_out = fifo_pop(&af->tx_fifo); af->currentOutputByte = fifo_pop(&af->txFifo);
} }
else if (af->curr_out == HDLC_FLAG || af->curr_out == HDLC_RESET) else if (af->currentOutputByte == HDLC_FLAG || af->currentOutputByte == HDLC_RESET)
/* If these chars are not escaped disable bit stuffing */ /* If these chars are not escaped disable bit stuffing */
af->bit_stuff = false; af->bitStuff = false;
} }
/* Start with LSB mask */ /* Start with LSB mask */
af->tx_bit = 0x01; af->txBit = 0x01;
} }
/* check for bit stuffing */ /* check for bit stuffing */
if (af->bit_stuff && af->stuff_cnt >= BIT_STUFF_LEN) if (af->bitStuff && af->bitstuffCount >= BIT_STUFF_LEN)
{ {
/* If there are more than 5 ones in a row insert a 0 */ /* If there are more than 5 ones in a row insert a 0 */
af->stuff_cnt = 0; af->bitstuffCount = 0;
/* switch tone */ /* switch tone */
af->phase_inc = SWITCH_TONE(af->phase_inc); af->phaseInc = SWITCH_TONE(af->phaseInc);
} }
else else
{ {
@ -359,14 +353,14 @@ uint8_t afsk_dac_isr(Afsk *af)
* NRZI: if we want to transmit a 1 the modulated frequency will stay * NRZI: if we want to transmit a 1 the modulated frequency will stay
* unchanged; with a 0, there will be a change in the tone. * unchanged; with a 0, there will be a change in the tone.
*/ */
if (af->curr_out & af->tx_bit) if (af->currentOutputByte & af->txBit)
{ {
/* /*
* Transmit a 1: * Transmit a 1:
* - Stay on the previous tone * - Stay on the previous tone
* - Increase bit stuff counter * - Increase bit stuff counter
*/ */
af->stuff_cnt++; af->bitstuffCount++;
} }
else else
{ {
@ -375,23 +369,23 @@ uint8_t afsk_dac_isr(Afsk *af)
* - Reset bit stuff counter * - Reset bit stuff counter
* - Switch tone * - Switch tone
*/ */
af->stuff_cnt = 0; af->bitstuffCount = 0;
af->phase_inc = SWITCH_TONE(af->phase_inc); af->phaseInc = SWITCH_TONE(af->phaseInc);
} }
/* Go to the next bit */ /* Go to the next bit */
af->tx_bit <<= 1; af->txBit <<= 1;
} }
af->sample_count = DAC_SAMPLESPERBIT; af->sampleIndex = DAC_SAMPLESPERBIT;
} }
/* Get new sample and put it out on the DAC */ /* Get new sample and put it out on the DAC */
af->phase_acc += af->phase_inc; af->phaseAcc += af->phaseInc;
af->phase_acc %= SIN_LEN; af->phaseAcc %= SIN_LEN;
af->sample_count--; af->sampleIndex--;
AFSK_STROBE_OFF(); AFSK_STROBE_OFF();
return sinSample(af->phase_acc); return sinSample(af->phaseAcc);
} }
@ -401,7 +395,7 @@ static size_t afsk_read(KFile *fd, void *_buf, size_t size)
uint8_t *buf = (uint8_t *)_buf; uint8_t *buf = (uint8_t *)_buf;
#if CONFIG_AFSK_RXTIMEOUT == 0 #if CONFIG_AFSK_RXTIMEOUT == 0
while (size-- && !fifo_isempty_locked(&af->rx_fifo)) while (size-- && !fifo_isempty_locked(&af->rxFifo))
#else #else
while (size--) while (size--)
#endif #endif
@ -410,7 +404,7 @@ static size_t afsk_read(KFile *fd, void *_buf, size_t size)
ticks_t start = timer_clock(); ticks_t start = timer_clock();
#endif #endif
while (fifo_isempty_locked(&af->rx_fifo)) while (fifo_isempty_locked(&af->rxFifo))
{ {
cpu_relax(); cpu_relax();
#if CONFIG_AFSK_RXTIMEOUT != -1 #if CONFIG_AFSK_RXTIMEOUT != -1
@ -419,7 +413,7 @@ static size_t afsk_read(KFile *fd, void *_buf, size_t size)
#endif #endif
} }
*buf++ = fifo_pop_locked(&af->rx_fifo); *buf++ = fifo_pop_locked(&af->rxFifo);
} }
return buf - (uint8_t *)_buf; return buf - (uint8_t *)_buf;
@ -432,10 +426,10 @@ static size_t afsk_write(KFile *fd, const void *_buf, size_t size)
while (size--) while (size--)
{ {
while (fifo_isfull_locked(&af->tx_fifo)) while (fifo_isfull_locked(&af->txFifo))
cpu_relax(); cpu_relax();
fifo_push_locked(&af->tx_fifo, *buf++); fifo_push_locked(&af->txFifo, *buf++);
afsk_txStart(af); afsk_txStart(af);
} }
@ -465,33 +459,26 @@ static void afsk_clearerr(KFile *fd)
ATOMIC(af->status = 0); ATOMIC(af->status = 0);
} }
void afsk_init(Afsk *af, int adcPin, int dacPin)
/**
* Initialize an AFSK1200 modem.
* \param af Afsk context to operate on.
* \param adc_ch ADC channel used by the demodulator.
* \param dac_ch DAC channel used by the modulator.
*/
void afsk_init(Afsk *af, int adc_ch, int dac_ch)
{ {
#if CONFIG_AFSK_RXTIMEOUT != -1 #if CONFIG_AFSK_RXTIMEOUT != -1
MOD_CHECK(timer); MOD_CHECK(timer);
#endif #endif
memset(af, 0, sizeof(*af)); memset(af, 0, sizeof(*af));
af->adc_ch = adc_ch; af->adcPin = adcPin;
af->dac_ch = dac_ch; af->dacPin = dacPin;
fifo_init(&af->delay_fifo, (uint8_t *)af->delay_buf, sizeof(af->delay_buf)); fifo_init(&af->delayFifo, (uint8_t *)af->delay_buf, sizeof(af->delay_buf));
fifo_init(&af->rx_fifo, af->rx_buf, sizeof(af->rx_buf)); fifo_init(&af->rxFifo, af->rx_buf, sizeof(af->rx_buf));
/* Fill sample FIFO with 0 */ /* Fill sample FIFO with 0 */
for (int i = 0; i < SAMPLESPERBIT / 2; i++) for (int i = 0; i < SAMPLESPERBIT / 2; i++)
fifo_push(&af->delay_fifo, 0); fifo_push(&af->delayFifo, 0);
fifo_init(&af->tx_fifo, af->tx_buf, sizeof(af->tx_buf)); fifo_init(&af->txFifo, af->tx_buf, sizeof(af->tx_buf));
AFSK_ADC_INIT(adc_ch, af); AFSK_ADC_INIT(adcPin, af);
AFSK_DAC_INIT(dac_ch, af); AFSK_DAC_INIT(dacPin, af);
AFSK_STROBE_INIT(); AFSK_STROBE_INIT();
//LOG_INFO("MARK_INC %d, SPACE_INC %d\n", MARK_INC, SPACE_INC); //LOG_INFO("MARK_INC %d, SPACE_INC %d\n", MARK_INC, SPACE_INC);
@ -501,5 +488,5 @@ void afsk_init(Afsk *af, int adc_ch, int dac_ch)
af->fd.flush = afsk_flush; af->fd.flush = afsk_flush;
af->fd.error = afsk_error; af->fd.error = afsk_error;
af->fd.clearerr = afsk_clearerr; af->fd.clearerr = afsk_clearerr;
af->phase_inc = MARK_INC; af->phaseInc = MARK_INC;
} }

View File

@ -26,74 +26,49 @@ typedef struct Hdlc
typedef struct Afsk typedef struct Afsk
{ {
// I/O hardware pins KFile fd;
int adcPin; // Pin for incoming signal
int dacPin; // Pin for outgoing signal // I/O hardware pins
int adcPin; // Pin for incoming signal
int dacPin; // Pin for outgoing signal
// General values // General values
Hdlc hdlc; // We need a link control structure Hdlc hdlc; // We need a link control structure
uint16_t preambleLength; // Length of sync preamble uint16_t preambleLength; // Length of sync preamble
uint16_t tailLength; // Length of transmission tail uint16_t tailLength; // Length of transmission tail
// Modulation values // Modulation values
uint8_t sample_index; // Current sample index for outgoing bit uint8_t sampleIndex; // Current sample index for outgoing bit
uint8_t currentOutputByte; // Current byte to be modulated uint8_t currentOutputByte; // Current byte to be modulated
uint8_t txBit; // Mask of current modulated bit uint8_t txBit; // Mask of current modulated bit
bool bitStuff; // Whether bitstuffing is allowed
uint8_t bitstuffCount; // Counter for bit-stuffing uint8_t bitstuffCount; // Counter for bit-stuffing
uint16_t phaseAcc; // Phase accumulator uint16_t phaseAcc; // Phase accumulator
uint16_t phaseInc; // Phase increment per sample uint16_t phaseInc; // Phase increment per sample
FIFOBuffer txFifo; // FIFO for transmit data FIFOBuffer txFifo; // FIFO for transmit data
uint8_t txBuffer[TX_BUFLEN];// Actial data storage for said FIFO uint8_t tx_buf[CONFIG_AFSK_TX_BUFLEN]; // Actial data storage for said FIFO
volatile bool sending; // Set when modem is sending volatile bool sending; // Set when modem is sending
// Demodulation values // Demodulation values
FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination
int8_t delayBuffer[5]; // Actual data storage for said FIFO int8_t delay_buf[SAMPLESPERBIT / 2 + 1];// Actual data storage for said FIFO
FIFOBuffer rxFifo; // FIFO for received data FIFOBuffer rxFifo; // FIFO for received data
uint8_t rxBuffer[RX_BUFLEN];// Actual data storage for said FIFO uint8_t rx_buf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO
int16_t iirX[2]; // IIR Filter X cells int16_t iirX[2]; // IIR Filter X cells
int16_t iirY[2]; // IIR Filter Y cells int16_t iirY[2]; // IIR Filter Y cells
uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed) uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed)
int8_t currentPhase; // Current phase of the demodulator int8_t currentPhase; // Current phase of the demodulator
uint8_t actualBits; // Actual found bits at correct bitrate uint8_t actualBits; // Actual found bits at correct bitrate
volatile int status; // Status of the modem, 0 means OK volatile int status; // Status of the modem, 0 means OK
/*
KFile fd;
int adc_ch;
int dac_ch;
uint8_t sample_count;
uint8_t curr_out;
uint8_t tx_bit;
bool bit_stuff;
uint8_t stuff_cnt;
uint16_t phase_acc;
uint16_t phase_inc;
FIFOBuffer delay_fifo;
int8_t delay_buf[SAMPLESPERBIT / 2 + 1];
FIFOBuffer rx_fifo;
uint8_t rx_buf[CONFIG_AFSK_RX_BUFLEN];
FIFOBuffer tx_fifo;
uint8_t tx_buf[CONFIG_AFSK_TX_BUFLEN];
int16_t iir_x[2];
int16_t iir_y[2];
uint8_t sampled_bits;
int8_t curr_phase;
uint8_t found_bits;
volatile bool sending;
volatile int status;
Hdlc hdlc;
uint16_t preamble_len;
uint16_t trailer_len;
*/
} Afsk; } Afsk;
#define KFT_AFSK MAKE_ID('F', 'S', 'K', 'M') #define KFT_AFSK MAKE_ID('F', 'S', 'K', 'M')

View File

@ -34,8 +34,8 @@ int main(void)
while (1) while (1)
{ {
if (!fifo_isempty(&afsk.rx_fifo)) { if (!fifo_isempty(&afsk.rxFifo)) {
char c = fifo_pop(&afsk.rx_fifo); char c = fifo_pop(&afsk.rxFifo);
kprintf("%c", c); kprintf("%c", c);
} }
} }

View File

@ -1,2 +1,2 @@
#define VERS_BUILD 45 #define VERS_BUILD 49
#define VERS_HOST "vixen" #define VERS_HOST "vixen"