/** * \file * * * \brief BattFS: a filesystem for embedded platforms (implementation). * * * \author Francesco Sacchi * */ #include "battfs.h" #include "cfg/cfg_battfs.h" #include #include /* MIN, MAX */ #include #include /* cpu_to_xx */ #define LOG_LEVEL BATTFS_LOG_LEVEL #define LOG_FORMAT BATTFS_LOG_FORMAT #include #include /* memset, memmove */ #if LOG_LEVEL >= LOG_LVL_INFO static void dumpPageArray(struct BattFsSuper *disk) { kprintf("Page array dump, free_page_start %d:", disk->free_page_start); for (pgcnt_t i = 0; i < disk->dev->blk_cnt; i++) { if (!(i % 16)) kputchar('\n'); kprintf("%04d ", disk->page_array[i]); } kputchar('\n'); } #endif /** * Convert from memory representation to disk structure. * \note filesystem is in little-endian format. */ INLINE void battfs_to_disk(struct BattFsPageHeader *hdr, uint8_t *buf) { STATIC_ASSERT(BATTFS_HEADER_LEN == 12); buf[0] = hdr->inode; buf[1] = hdr->fill; buf[2] = hdr->fill >> 8; buf[3] = hdr->pgoff; buf[4] = hdr->pgoff >> 8; /* * Sequence number is 40 bits long. * No need to take care of wraparonds: the memory will die first! */ buf[5] = hdr->seq; buf[6] = hdr->seq >> 8; buf[7] = hdr->seq >> 16; buf[8] = hdr->seq >> 24; buf[9] = hdr->seq >> 32; /* * This field must be the last one! * This is needed because if the page is only partially * written, we can use this to detect it. */ buf[10] = hdr->fcs; buf[11] = hdr->fcs >> 8; } /** * Convert from disk structure to memory representation. * \note filesystem is in little-endian format. */ INLINE void disk_to_battfs(uint8_t *buf, struct BattFsPageHeader *hdr) { STATIC_ASSERT(BATTFS_HEADER_LEN == 12); hdr->inode = buf[0]; hdr->fill = buf[2] << 8 | buf[1]; hdr->pgoff = buf[4] << 8 | buf[3]; hdr->seq = (seq_t)buf[9] << 32 | (seq_t)buf[8] << 24 | (seq_t)buf[7] << 16 | buf[6] << 8 | buf[5]; hdr->fcs = buf[11] << 8 | buf[10]; } /** * Compute the fcs of the header. */ static fcs_t computeFcs(struct BattFsPageHeader *hdr) { uint8_t buf[BATTFS_HEADER_LEN]; fcs_t cks; battfs_to_disk(hdr, buf); rotating_init(&cks); /* fcs is at the end of whole header */ rotating_update(buf, BATTFS_HEADER_LEN - sizeof(fcs_t), &cks); return cks; } /** * Read header of \a page in \a hdr. * \return true on success, false otherwise. */ static bool readHdr(struct BattFsSuper *disk, pgcnt_t page, struct BattFsPageHeader *hdr) { uint8_t buf[BATTFS_HEADER_LEN]; /* * Read header from disk. * Header is actually a footer, and so * resides at page end. */ if (kblock_read(disk->dev, page, buf, disk->data_size, BATTFS_HEADER_LEN) != BATTFS_HEADER_LEN) { LOG_ERR("page[%d]\n", page); return false; } /* Fill header */ disk_to_battfs(buf, hdr); return true; } static bool writeHdr(struct BattFsSuper *disk, pgcnt_t page, struct BattFsPageHeader *hdr) { uint8_t buf[BATTFS_HEADER_LEN]; #warning FIXME:refactor computeFcs to save time and stack hdr->fcs = computeFcs(hdr); /* Fill buffer */ battfs_to_disk(hdr, buf); /* * write header to disk. * Header is actually a footer, and so * resides at page end. */ if (kblock_write(disk->dev, page, buf, disk->data_size, BATTFS_HEADER_LEN) != BATTFS_HEADER_LEN) { LOG_ERR("writing to buffer\n"); return false; } return true; } /** * Count the number of pages from * inode 0 to \a inode in \a filelen_table. */ static pgcnt_t countPages(pgoff_t *filelen_table, inode_t inode) { pgcnt_t cnt = 0; for (inode_t i = 0; i < inode; i++) cnt += filelen_table[i]; return cnt; } /** * Move all pages in page allocation array from \a src to \a src + \a offset. * The number of pages moved is page_count - MAX(dst, src). */ static void movePages(struct BattFsSuper *disk, pgcnt_t src, int offset) { pgcnt_t dst = src + offset; LOG_INFO("src %d, offset %d, size %d\n", src, offset, (unsigned int)((disk->dev->blk_cnt - MAX(dst, src)) * sizeof(pgcnt_t))); memmove(&disk->page_array[dst], &disk->page_array[src], (disk->dev->blk_cnt - MAX(dst, src)) * sizeof(pgcnt_t)); if (offset < 0) { /* Fill empty space in array with sentinel */ for (pgcnt_t page = disk->dev->blk_cnt + offset; page < disk->dev->blk_cnt; page++) disk->page_array[page] = PAGE_UNSET_SENTINEL; } } /** * Count number of pages per file on \a disk. * This information is registered in \a filelen_table. * Array index represent file inode, while value contained * is the number of pages used by that file. * * \return true if ok, false on disk read errors. * \note The whole disk is scanned once. */ static bool countDiskFilePages(struct BattFsSuper *disk, pgoff_t *filelen_table) { BattFsPageHeader hdr; disk->free_page_start = 0; /* Count the number of disk page per file */ for (pgcnt_t page = 0; page < disk->dev->blk_cnt; page++) { if (!readHdr(disk, page, &hdr)) return false; /* Increase free space */ disk->free_bytes += disk->data_size; /* Check header FCS */ if (hdr.fcs == computeFcs(&hdr)) { ASSERT(hdr.fill <= disk->data_size); /* Page is valid and is owned by a file */ filelen_table[hdr.inode]++; /* Keep trace of free space */ disk->free_bytes -= hdr.fill; disk->free_page_start++; } } LOG_INFO("free_bytes:%ld, free_page_start:%d\n", (long)disk->free_bytes, disk->free_page_start); return true; } /** * Fill page allocation array of \a disk * using file lenghts in \a filelen_table. * * The page allocation array is an array containings all file infos. * Is ordered by file, and within each file is ordered by page offset * inside file. * e.g. : at page array[0] you will find page address of the first page * of the first file (if present). * Free blocks are allocated after the last file. * * \return true if ok, false on disk read errors. * \note The whole disk is scanned at max twice. */ static bool fillPageArray(struct BattFsSuper *disk, pgoff_t *filelen_table) { BattFsPageHeader hdr; pgcnt_t curr_free_page = disk->free_page_start; /* Fill page allocation array */ for (pgcnt_t page = 0; page < disk->dev->blk_cnt; page++) { if (!readHdr(disk, page, &hdr)) return false; /* Check header FCS */ if (hdr.fcs == computeFcs(&hdr)) { /* Compute array position */ pgcnt_t array_pos = countPages(filelen_table, hdr.inode); array_pos += hdr.pgoff; /* Check if position is already used by another page of the same file */ if (disk->page_array[array_pos] == PAGE_UNSET_SENTINEL) disk->page_array[array_pos] = page; else { BattFsPageHeader hdr_prv; if (!readHdr(disk, disk->page_array[array_pos], &hdr_prv)) return false; /* Check header FCS */ ASSERT(hdr_prv.fcs == computeFcs(&hdr_prv)); /* Only the very same page with a different seq number can be here */ ASSERT(hdr.inode == hdr_prv.inode); ASSERT(hdr.pgoff == hdr_prv.pgoff); ASSERT(hdr.seq != hdr_prv.seq); pgcnt_t new_page, old_page; fill_t old_fill; /* * Sequence number comparison: since * seq is 40 bits wide, it wraps once * every 1.1E12 times. * The memory will not live enough to * see a wraparound, so we can use a simple * compare here. */ if (hdr.seq > hdr_prv.seq) { /* Current header is newer than the previuos one */ old_page = disk->page_array[array_pos]; new_page = page; old_fill = hdr_prv.fill; } else { /* Previous header is newer than the current one */ old_page = page; new_page = disk->page_array[array_pos]; old_fill = hdr.fill; } /* Set new page */ disk->page_array[array_pos] = new_page; /* Add free space */ disk->free_bytes += old_fill; /* Shift all array one position to the left, overwriting duplicate page */ array_pos -= hdr.pgoff; array_pos += filelen_table[hdr.inode]; movePages(disk, array_pos, -1); /* Move back all indexes */ filelen_table[hdr.inode]--; disk->free_page_start--; curr_free_page--; /* Set old page as free */ ASSERT(disk->page_array[curr_free_page] == PAGE_UNSET_SENTINEL); disk->page_array[curr_free_page++] = old_page; } } else { /* Invalid page, keep as free */ ASSERT(disk->page_array[curr_free_page] == PAGE_UNSET_SENTINEL); //LOG_INFO("Page %d invalid, keeping as free\n", page); disk->page_array[curr_free_page++] = page; } } return true; } /** * Initialize and mount disk described by * \a disk. * \return false on errors, true otherwise. */ bool battfs_mount(struct BattFsSuper *disk, struct KBlock *dev, pgcnt_t *page_array, size_t array_size) { pgoff_t filelen_table[BATTFS_MAX_FILES]; ASSERT(dev); ASSERT(kblock_partialWrite(dev)); disk->dev = dev; ASSERT(disk->dev->blk_size > BATTFS_HEADER_LEN); /* Fill page_size with the usable space */ disk->data_size = disk->dev->blk_size - BATTFS_HEADER_LEN; ASSERT(disk->dev->blk_cnt); ASSERT(disk->dev->blk_cnt < PAGE_UNSET_SENTINEL - 1); ASSERT(page_array); disk->page_array = page_array; ASSERT(array_size >= disk->dev->blk_cnt * sizeof(pgcnt_t)); memset(filelen_table, 0, BATTFS_MAX_FILES * sizeof(pgoff_t)); disk->free_bytes = 0; disk->disk_size = (disk_size_t)disk->data_size * disk->dev->blk_cnt; /* Count pages per file */ if (!countDiskFilePages(disk, filelen_table)) { LOG_ERR("counting file pages\n"); return false; } /* Once here, we have filelen_table filled with file lengths */ /* Fill page array with sentinel */ for (pgcnt_t page = 0; page < disk->dev->blk_cnt; page++) disk->page_array[page] = PAGE_UNSET_SENTINEL; /* Fill page allocation array using filelen_table */ if (!fillPageArray(disk, filelen_table)) { LOG_ERR("filling page array\n"); return false; } #if LOG_LEVEL >= LOG_LVL_INFO dumpPageArray(disk); #endif #if CONFIG_BATTFS_SHUFFLE_FREE_PAGES SHUFFLE(&disk->page_array[disk->free_page_start], disk->dev->blk_cnt - disk->free_page_start); LOG_INFO("Page array after shuffle:\n"); #if LOG_LEVEL >= LOG_LVL_INFO dumpPageArray(disk); #endif #endif /* Init list for opened files. */ LIST_INIT(&disk->file_opened_list); return true; } /** * Check the filesystem. * \return true if ok, false on errors. */ bool battfs_fsck(struct BattFsSuper *disk) { #define FSCHECK(cond) do { if(!(cond)) { LOG_ERR("\"" #cond "\"\n"); return false; } } while (0) FSCHECK(disk->free_page_start <= disk->dev->blk_cnt); FSCHECK(disk->data_size < disk->dev->blk_size); FSCHECK(disk->free_bytes <= disk->disk_size); disk_size_t free_bytes = 0; BattFsPageHeader hdr, prev_hdr; inode_t files = 0; pgcnt_t page_used = 0; bool start = true; /* Uneeded, the first time will be overwritten but useful to silence * the warning for uninitialized value */ FSCHECK(readHdr(disk, 0, &prev_hdr)); for (pgcnt_t page = 0; page < disk->dev->blk_cnt; page++) { FSCHECK(readHdr(disk, disk->page_array[page], &hdr)); free_bytes += disk->data_size; if (page < disk->free_page_start) { FSCHECK(computeFcs(&hdr) == hdr.fcs); page_used++; free_bytes -= hdr.fill; if (hdr.inode != prev_hdr.inode || start) { if (LIKELY(!start)) FSCHECK(hdr.inode > prev_hdr.inode); else start = false; FSCHECK(hdr.pgoff == 0); files++; } else { FSCHECK(hdr.fill != 0); FSCHECK(prev_hdr.fill == disk->data_size); FSCHECK(hdr.pgoff == prev_hdr.pgoff + 1); } prev_hdr = hdr; } } FSCHECK(page_used == disk->free_page_start); FSCHECK(free_bytes == disk->free_bytes); return true; } /** * Flush file \a fd. * \return 0 if ok, EOF on errors. */ static int battfs_flush(struct KFile *fd) { BattFs *fdb = BATTFS_CAST(fd); if (kblock_flush(fdb->disk->dev) == 0) return 0; else { fdb->errors |= BATTFS_DISK_FLUSHBUF_ERR; return EOF; } } /** * Close file \a fd. * \return 0 if ok, EOF on errors. */ static int battfs_fileclose(struct KFile *fd) { BattFs *fdb = BATTFS_CAST(fd); if (battfs_flush(fd) == 0) { REMOVE(&fdb->link); return 0; } else return EOF; } #define NO_SPACE PAGE_UNSET_SENTINEL static pgcnt_t allocateNewPage(struct BattFsSuper *disk, pgcnt_t new_pos, inode_t inode) { if (SPACE_OVER(disk)) { LOG_ERR("No disk space available!\n"); return NO_SPACE; } LOG_INFO("Getting new page %d, pos %d\n", disk->page_array[disk->free_page_start], new_pos); pgcnt_t new_page = disk->page_array[disk->free_page_start++]; memmove(&disk->page_array[new_pos + 1], &disk->page_array[new_pos], (disk->free_page_start - new_pos - 1) * sizeof(pgcnt_t)); Node *n; /* Move following file start point one position ahead. */ FOREACH_NODE(n, &disk->file_opened_list) { BattFs *file = containerof(n, BattFs, link); if (file->inode > inode) { LOG_INFO("Move file %d start pos\n", file->inode); file->start++; } } disk->page_array[new_pos] = new_page; return new_page; } static pgcnt_t renewPage(struct BattFsSuper *disk, pgcnt_t old_pos) { if (SPACE_OVER(disk)) { LOG_ERR("No disk space available!\n"); return NO_SPACE; } /* Get a free page */ pgcnt_t new_page = disk->page_array[disk->free_page_start]; movePages(disk, disk->free_page_start + 1, -1); /* Insert previous page in free blocks list */ LOG_INFO("Setting page %d as free\n", old_pos); disk->page_array[disk->dev->blk_cnt - 1] = old_pos; return new_page; } /** * Write to file \a fd \a size bytes from \a buf. * \return The number of bytes written. */ static size_t battfs_write(struct KFile *fd, const void *_buf, size_t size) { BattFs *fdb = BATTFS_CAST(fd); BattFsSuper *disk = fdb->disk; const uint8_t *buf = (const uint8_t *)_buf; size_t total_write = 0; pgoff_t pg_offset; pgaddr_t addr_offset; pgaddr_t wr_len; BattFsPageHeader curr_hdr; pgcnt_t new_page; if (fd->seek_pos < 0) { fdb->errors |= BATTFS_NEGATIVE_SEEK_ERR; return total_write; } if (fd->seek_pos > fd->size) { if (!readHdr(disk, fdb->start[fdb->max_off], &curr_hdr)) { fdb->errors |= BATTFS_DISK_READ_ERR; return total_write; } /* * Renew page only if is not in cache. * This avoids rewriting the same page continuously * if the user code keeps writing in the same portion * of the file. */ if (kblock_buffered(disk->dev) && ((fdb->start[fdb->max_off] != kblock_cachedBlock(disk->dev)) || !kblock_cacheDirty(disk->dev))) { new_page = renewPage(disk, fdb->start[fdb->max_off]); if (new_page == NO_SPACE) { fdb->errors |= BATTFS_DISK_SPACEOVER_ERR; return total_write; } kblock_copy(disk->dev, fdb->start[fdb->max_off], new_page); fdb->start[fdb->max_off] = new_page; } else new_page = fdb->start[fdb->max_off]; /* Fill unused space of first page with 0s */ uint8_t dummy = 0; // TODO: write in blocks to speed up things pgaddr_t zero_bytes = MIN(fd->seek_pos - fd->size, (kfile_off_t)(disk->data_size - curr_hdr.fill)); while (zero_bytes--) { if (kblock_write(disk->dev, new_page, &dummy, curr_hdr.fill, 1) != 1) { fdb->errors |= BATTFS_DISK_WRITE_ERR; return total_write; } curr_hdr.fill++; fd->size++; disk->free_bytes--; } curr_hdr.seq++; if (!writeHdr(disk, new_page, &curr_hdr)) { fdb->errors |= BATTFS_DISK_WRITE_ERR; return total_write; } /* Allocate the missing pages first. */ pgoff_t missing_pages = fd->seek_pos / disk->data_size - fdb->max_off; LOG_INFO("missing pages: %d\n", missing_pages); while (missing_pages--) { zero_bytes = MIN((kfile_off_t)disk->data_size, fd->seek_pos - fd->size); new_page = allocateNewPage(disk, (fdb->start - disk->page_array) + fdb->max_off + 1, fdb->inode); if (new_page == NO_SPACE) { fdb->errors |= BATTFS_DISK_SPACEOVER_ERR; return total_write; } // TODO: write in blocks to speed up things /* Fill page buffer with 0 to avoid filling unused pages with garbage */ for (pgaddr_t off = 0; off < disk->data_size; off++) { if (kblock_write(disk->dev, new_page, &dummy, off, 1) != 1) { fdb->errors |= BATTFS_DISK_WRITE_ERR; return total_write; } } curr_hdr.inode = fdb->inode; curr_hdr.pgoff = ++fdb->max_off; curr_hdr.fill = zero_bytes; curr_hdr.seq = 0; if (!writeHdr(disk, new_page, &curr_hdr)) { fdb->errors |= BATTFS_DISK_WRITE_ERR; return total_write; } /* Update size and free space left */ fd->size += zero_bytes; disk->free_bytes -= zero_bytes; } } while (size) { pg_offset = fd->seek_pos / disk->data_size; addr_offset = fd->seek_pos % disk->data_size; wr_len = MIN(size, (size_t)(disk->data_size - addr_offset)); /* Handle write outside EOF */ if (pg_offset > fdb->max_off) { LOG_INFO("New page needed, pg_offset %d, pos %d\n", pg_offset, (int)((fdb->start - disk->page_array) + pg_offset)); new_page = allocateNewPage(disk, (fdb->start - disk->page_array) + pg_offset, fdb->inode); if (new_page == NO_SPACE) { fdb->errors |= BATTFS_DISK_SPACEOVER_ERR; return total_write; } curr_hdr.inode = fdb->inode; curr_hdr.pgoff = pg_offset; curr_hdr.fill = 0; curr_hdr.seq = 0; fdb->max_off = pg_offset; } else { if (!readHdr(disk, fdb->start[pg_offset], &curr_hdr)) { fdb->errors |= BATTFS_DISK_READ_ERR; return total_write; } /* Renew page only if is not in cache. */ if (kblock_buffered(disk->dev) && ((fdb->start[fdb->max_off] != kblock_cachedBlock(disk->dev)) || !kblock_cacheDirty(disk->dev))) { new_page = renewPage(disk, fdb->start[pg_offset]); if (new_page == NO_SPACE) { fdb->errors |= BATTFS_DISK_SPACEOVER_ERR; return total_write; } LOG_INFO("Re-writing page %d to %d\n", fdb->start[pg_offset], new_page); if (kblock_copy(disk->dev, fdb->start[pg_offset], new_page) != 0) { fdb->errors |= BATTFS_DISK_WRITE_ERR; return total_write; } fdb->start[pg_offset] = new_page; } else { LOG_INFO("Using cached block %d\n", fdb->start[pg_offset]); new_page = fdb->start[pg_offset]; } curr_hdr.seq++; } //LOG_INFO("writing to buffer for page %d, offset %d, size %d\n", disk->curr_page, addr_offset, wr_len); if (kblock_write(disk->dev, new_page, buf, addr_offset, wr_len) != wr_len) { fdb->errors |= BATTFS_DISK_WRITE_ERR; return total_write; } size -= wr_len; fd->seek_pos += wr_len; total_write += wr_len; buf += wr_len; fill_t fill_delta = MAX((int32_t)(addr_offset + wr_len) - curr_hdr.fill, (int32_t)0); disk->free_bytes -= fill_delta; fd->size += fill_delta; curr_hdr.fill += fill_delta; if (!writeHdr(disk, new_page, &curr_hdr)) { fdb->errors |= BATTFS_DISK_WRITE_ERR; return total_write; } //LOG_INFO("free_bytes %d, seek_pos %d, size %d, curr_hdr.fill %d\n", disk->free_bytes, fd->seek_pos, fd->size, curr_hdr.fill); } return total_write; } /** * Read from file \a fd \a size bytes in \a buf. * \return The number of bytes read. */ static size_t battfs_read(struct KFile *fd, void *_buf, size_t size) { BattFs *fdb = BATTFS_CAST(fd); BattFsSuper *disk = fdb->disk; uint8_t *buf = (uint8_t *)_buf; size_t total_read = 0; pgoff_t pg_offset; pgaddr_t addr_offset; pgaddr_t read_len; if (fd->seek_pos < 0) { fdb->errors |= BATTFS_NEGATIVE_SEEK_ERR; return total_read; } size = MIN((kfile_off_t)size, MAX(fd->size - fd->seek_pos, (kfile_off_t)0)); while (size) { pg_offset = fd->seek_pos / disk->data_size; addr_offset = fd->seek_pos % disk->data_size; read_len = MIN(size, (size_t)(disk->data_size - addr_offset)); //LOG_INFO("reading from page %d, offset %d, size %d\n", fdb->start[pg_offset], addr_offset, read_len); /* Read from disk */ if (kblock_read(disk->dev, fdb->start[pg_offset], buf, addr_offset, read_len) != read_len) { fdb->errors |= BATTFS_DISK_READ_ERR; return total_read; } #ifdef _DEBUG BattFsPageHeader hdr; readHdr(disk, fdb->start[pg_offset], &hdr); ASSERT(hdr.inode == fdb->inode); #endif size -= read_len; fd->seek_pos += read_len; total_read += read_len; buf += read_len; } return total_read; } /** * Search file \a inode in \a disk using a binary search. * \a last is filled with array offset of file start * in disk->page_array if file is found, otherwise * \a last is filled with the correct insert position * for creating a file with the given \a inode. * \return true if file is found, false otherwisr. */ static bool findFile(BattFsSuper *disk, inode_t inode, pgcnt_t *last) { BattFsPageHeader hdr; pgcnt_t first = 0, page; *last = disk->free_page_start; fcs_t fcs; while (first < *last) { page = (first + *last) / 2; LOG_INFO("first %d, last %d, page %d\n", first, *last, page); if (!readHdr(disk, disk->page_array[page], &hdr)) return false; LOG_INFO("inode read: %d\n", hdr.inode); fcs = computeFcs(&hdr); if (hdr.fcs == fcs && hdr.inode == inode) { *last = page - hdr.pgoff; LOG_INFO("Found: %d\n", *last); return true; } else if (hdr.fcs == fcs && hdr.inode < inode) first = page + 1; else *last = page; } LOG_INFO("Not found: last %d\n", *last); return false; } /** * \return true if file \a inode exists on \a disk, false otherwise. */ bool battfs_fileExists(BattFsSuper *disk, inode_t inode) { pgcnt_t dummy; return findFile(disk, inode, &dummy); } /** * Count size of file \a inode on \a disk, starting at pointer \a start * in disk->page_array. Size is written in \a size. * \return true if all s ok, false on disk read errors. */ static file_size_t countFileSize(BattFsSuper *disk, pgcnt_t *start, inode_t inode) { file_size_t size = 0; BattFsPageHeader hdr; while (start < &disk->page_array[disk->free_page_start]) { if (!readHdr(disk, *start++, &hdr)) return EOF; if (hdr.fcs == computeFcs(&hdr) && hdr.inode == inode) size += hdr.fill; else break; } return size; } static int battfs_error(struct KFile *fd) { BattFs *fdb = BATTFS_CAST(fd); return fdb->errors; } static void battfs_clearerr(struct KFile *fd) { BattFs *fdb = BATTFS_CAST(fd); fdb->errors = 0; } /** * Open file \a inode from \a disk in \a mode. * File context is stored in \a fd. * \return true if ok, false otherwise. */ bool battfs_fileopen(BattFsSuper *disk, BattFs *fd, inode_t inode, filemode_t mode) { Node *n; memset(fd, 0, sizeof(*fd)); /* Search file start point in disk page array */ pgcnt_t start_pos; if (!findFile(disk, inode, &start_pos)) { LOG_INFO("file %d not found\n", inode); if (!(mode & BATTFS_CREATE)) { fd->errors |= BATTFS_FILE_NOT_FOUND_ERR; return false; } /* Create the file */ BattFsPageHeader hdr; if (allocateNewPage(disk, start_pos, inode) == NO_SPACE) { fd->errors |= BATTFS_DISK_SPACEOVER_ERR; return false; } hdr.inode = inode; hdr.pgoff = 0; hdr.fill = 0; hdr.seq = 0; if (!writeHdr(disk, disk->page_array[start_pos], &hdr)) { fd->errors |= BATTFS_DISK_WRITE_ERR; return false; } } fd->start = &disk->page_array[start_pos]; LOG_INFO("Start pos %d\n", start_pos); /* Fill file size */ if ((fd->fd.size = countFileSize(disk, fd->start, inode)) == EOF) { fd->errors |= BATTFS_DISK_READ_ERR; return false; } fd->max_off = fd->fd.size / disk->data_size; /* Reset seek position */ fd->fd.seek_pos = 0; /* Insert file handle in list, ordered by inode, ascending. */ FOREACH_NODE(n, &disk->file_opened_list) { BattFs *file = containerof(n, BattFs, link); if (file->inode >= inode) break; } INSERT_BEFORE(&fd->link, n); /* Fill in data */ fd->inode = inode; fd->mode = mode; fd->disk = disk; fd->fd.close = battfs_fileclose; fd->fd.flush = battfs_flush; fd->fd.read = battfs_read; fd->fd.reopen = kfile_genericReopen; fd->fd.seek = kfile_genericSeek; fd->fd.write = battfs_write; fd->fd.error = battfs_error; fd->fd.clearerr = battfs_clearerr; DB(fd->fd._type = KFT_BATTFS); return true; } /** * Umount \a disk. */ bool battfs_umount(struct BattFsSuper *disk) { Node *n; int res = 0; /* Close all open files */ FOREACH_NODE(n, &disk->file_opened_list) { BattFs *file = containerof(n, BattFs, link); res += battfs_fileclose(&file->fd); } /* Close disk */ return (kblock_flush(disk->dev) == 0) && (kblock_close(disk->dev) == 0) && (res == 0); } #if UNIT_TEST void battfs_writeTestBlock(KBlock *dev, pgcnt_t page, inode_t inode, seq_t seq, fill_t fill, pgoff_t pgoff) { uint8_t buf[BATTFS_HEADER_LEN]; battfs_eraseBlock(dev, page); BattFsPageHeader hdr; hdr.inode = inode; hdr.fill = fill; hdr.pgoff = pgoff; hdr.seq = seq; hdr.fcs = computeFcs(&hdr); battfs_to_disk(&hdr, buf); ASSERT(kblock_write(dev, page, buf, dev->blk_size - BATTFS_HEADER_LEN, BATTFS_HEADER_LEN) == BATTFS_HEADER_LEN); ASSERT(kblock_flush(dev) == 0); } void battfs_eraseBlock(KBlock *dev, pgcnt_t page) { /* Reset page to all 0xff */ uint8_t buf[dev->blk_size]; memset(buf, 0xFF, dev->blk_size); ASSERT(kblock_write(dev, page, buf, 0, dev->blk_size) == dev->blk_size); ASSERT(kblock_flush(dev) == 0); } #endif