#ifndef AFSK_H #define AFSK_H #include "device.h" #include #include #include #include #include "util/FIFO.h" #include "protocol/HDLC.h" // TODO: Optimise RAM by moving this to progmem #define SIN_LEN 512 static const uint8_t sine_table[] = { 128, 129, 131, 132, 134, 135, 137, 138, 140, 142, 143, 145, 146, 148, 149, 151, 152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 167, 169, 170, 172, 173, 175, 176, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 192, 193, 194, 196, 197, 198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 243, 244, 245, 245, 246, 246, 247, 248, 248, 249, 249, 250, 250, 250, 251, 251, 252, 252, 252, 253, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, }; inline static uint8_t sinSample(uint16_t i) { uint16_t newI = i % (SIN_LEN/2); newI = (newI >= (SIN_LEN/4)) ? (SIN_LEN/2 - newI -1) : newI; uint8_t sine = sine_table[newI]; return (i >= (SIN_LEN/2)) ? (255 - sine) : sine; } #define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC) #define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01) #define TRANSITION_FOUND(bits) BITS_DIFFER((bits), (bits) >> 1) #define DUAL_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x03) == 0x03) #define QUAD_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x0F) == 0x0F) #define CPU_FREQ F_CPU #define BITRATE 1200 #if BITRATE == 300 #define CONFIG_ADC_SAMPLERATE 9600UL #define CONFIG_DAC_SAMPLERATE 19200UL #define CLOCK_TICKS_PER_10_MS 96 #elif BITRATE == 1200 #define CONFIG_ADC_SAMPLERATE 9600UL #define CONFIG_DAC_SAMPLERATE 19200UL #define CLOCK_TICKS_PER_10_MS 96 #elif BITRATE == 2400 #define CONFIG_ADC_SAMPLERATE 19200UL #define CONFIG_DAC_SAMPLERATE 19200UL #define CLOCK_TICKS_PER_10_MS 192 #endif #define CLOCK_TICKS_PER_SEC CONFIG_ADC_SAMPLERATE #define CONFIG_AFSK_RX_BUFLEN AX25_MAX_FRAME_LEN #define CONFIG_AFSK_TX_BUFLEN AX25_MAX_FRAME_LEN #define CONFIG_AFSK_RXTIMEOUT 0 #if BITRATE == 300 #define CONFIG_AFSK_PREAMBLE_LEN 150UL #define CONFIG_AFSK_TRAILER_LEN 10UL #elif BITRATE == 1200 #define CONFIG_AFSK_PREAMBLE_LEN 150UL #define CONFIG_AFSK_TRAILER_LEN 10UL #elif BITRATE == 2400 #define CONFIG_AFSK_PREAMBLE_LEN 230UL #define CONFIG_AFSK_TRAILER_LEN 25UL #endif #define BIT_STUFF_LEN 5 #define ADC_SAMPLESPERBIT (CONFIG_ADC_SAMPLERATE / BITRATE) #define ADC_TICKS_BETWEEN_SAMPLES ((((CPU_FREQ+FREQUENCY_CORRECTION)) / CONFIG_ADC_SAMPLERATE) - 1) #define DAC_SAMPLESPERBIT (CONFIG_DAC_SAMPLERATE / BITRATE) #define DAC_TICKS_BETWEEN_SAMPLES ((((CPU_FREQ+FREQUENCY_CORRECTION)) / CONFIG_DAC_SAMPLERATE) - 1) // TODO: Maybe revert to only looking at two samples #if BITRATE == 300 #define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2) #elif BITRATE == 1200 #if CONFIG_ADC_SAMPLERATE == 19200 #define SIGNAL_TRANSITIONED(bits) QUAD_XOR((bits), (bits) >> 4) #elif CONFIG_ADC_SAMPLERATE == 9600 #define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2) #endif #elif BITRATE == 2400 #define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2) #endif #if BITRATE == 300 // TODO: Real-world tests on which resolution is best //#define PHASE_BITS 8 #define PHASE_BITS 4 #else #define PHASE_BITS 8 // Sub-sample phase counter resolution #endif #define PHASE_INC 1 // Nudge by above resolution for each adjustment #define PHASE_MAX (ADC_SAMPLESPERBIT * PHASE_BITS) // Size of our phase counter // TODO: Test which target is best in real world // For 1200, this seems a little better #if BITRATE == 300 #define PHASE_THRESHOLD (PHASE_MAX / 2) #elif BITRATE == 1200 #if CONFIG_ADC_SAMPLERATE == 19200 #define PHASE_THRESHOLD (PHASE_MAX / 2)+3*PHASE_BITS // Target transition point of our phase window #elif CONFIG_ADC_SAMPLERATE == 9600 #define PHASE_THRESHOLD (PHASE_MAX / 2) // 64 // Target transition point of our phase window #endif #elif BITRATE == 2400 #define PHASE_THRESHOLD (PHASE_MAX / 2) // Target transition point of our phase window #endif #if BITRATE == 300 #define DCD_TIMEOUT_SAMPLES 520 #define DCD_MIN_COUNT 2 #elif BITRATE == 1200 #define DCD_TIMEOUT_SAMPLES CONFIG_ADC_SAMPLERATE/100 #define DCD_MIN_COUNT CONFIG_ADC_SAMPLERATE/1600 #elif BITRATE == 2400 #define DCD_TIMEOUT_SAMPLES CONFIG_ADC_SAMPLERATE/100 #define DCD_MIN_COUNT CONFIG_ADC_SAMPLERATE/1600 #endif // TODO: Revamp filtering #if BITRATE == 1200 #define FILTER_CUTOFF 500 #define MARK_FREQ 1200 #define SPACE_FREQ 2200 #elif BITRATE == 2400 // TODO: Determine best filter cutoff // #define FILTER_CUTOFF 772 #define FILTER_CUTOFF 1000 #define MARK_FREQ 2165 #define SPACE_FREQ 3970 //#define MARK_FREQ 2200 //#define SPACE_FREQ 4000 #elif BITRATE == 300 #define FILTER_CUTOFF 500 #define MARK_FREQ 1600 #define SPACE_FREQ 1800 #else #error Unsupported bitrate! #endif typedef struct Hdlc { uint8_t demodulatedBits; uint8_t bitIndex; uint8_t currentByte; bool receiving; bool dcd; uint8_t dcd_count; } Hdlc; typedef struct Afsk { // Stream access to modem FILE fd; // General values Hdlc hdlc; // We need a link control structure uint16_t preambleLength; // Length of sync preamble uint16_t tailLength; // Length of transmission tail // Modulation values uint8_t sampleIndex; // Current sample index for outgoing bit uint8_t currentOutputByte; // Current byte to be modulated uint8_t txBit; // Mask of current modulated bit bool bitStuff; // Whether bitstuffing is allowed uint8_t bitstuffCount; // Counter for bit-stuffing uint16_t phaseAcc; // Phase accumulator uint16_t phaseInc; // Phase increment per sample uint16_t silentSamples; // How many samples were completely silent volatile bool sending; // Set when modem is sending volatile bool sending_data; // Set when modem is sending data // Demodulation values FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination #if BITRATE == 1200 int8_t delayBuf[ADC_SAMPLESPERBIT / 2 + 1]; // Actual data storage for said FIFO #elif BITRATE == 2400 int8_t delayBuf[7 + 1]; #elif BITRATE == 300 int8_t delayBuf[16 + 1]; #endif FIFOBuffer rxFifo; // FIFO for received data uint8_t rxBuf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO FIFOBuffer txFifo; // FIFO for transmit data uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actual data storage for said FIFO int16_t iirX[2]; // IIR Filter X cells int16_t iirY[2]; // IIR Filter Y cells #if ADC_SAMPLESPERBIT < 17 uint16_t sampledBits; // Bits sampled by the demodulator (at ADC speed) #elif ADC_SAMPLESPERBIT < 33 uint32_t sampledBits; #else #error Not enough space in sampledBits variable! #endif int16_t currentPhase; // Current phase of the demodulator uint8_t actualBits; // Actual found bits at correct bitrate volatile int status; // Status of the modem, 0 means OK } Afsk; #define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor)) #define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_DAC_SAMPLERATE)) #define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_DAC_SAMPLERATE)) #define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = true; } while (0) #define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = false; } while (0) void AFSK_init(Afsk *afsk); void AFSK_adc_init(void); void AFSK_dac_init(void); void AFSK_poll(Afsk *afsk); #endif