#include #include "AFSK.h" #include "util/time.h" #include "hardware/LED.h" #include "protocol/KISS.h" #include "hardware/SD.h" // TODO: Remove testing vars //// #define SAMPLES_TO_CAPTURE 128 ticks_t capturedsamples = 0; uint8_t samplebuf[SAMPLES_TO_CAPTURE]; ///////////////////////////////// extern volatile ticks_t _clock; extern unsigned long custom_preamble; extern unsigned long custom_tail; bool hw_afsk_dac_isr = false; bool hw_5v_ref = false; Afsk *AFSK_modem; // Forward declerations int afsk_getchar(FILE *strem); int afsk_putchar(char c, FILE *stream); // ADC and clock setup void AFSK_hw_init(void) { _clock = 0; // Run ADC initialisation AFSK_adc_init(); // Run DAC initialisation AFSK_dac_init(); } void AFSK_dac_init(void) { // DAC uses all 8 pins of one port, // so set all to output DAC_DDR |= 0xFF; // Set Timer3 to normal operation TCCR3A = 0; TCCR3B = _BV(CS10) | _BV(WGM33)| _BV(WGM32); ICR3 = DAC_TICKS_BETWEEN_SAMPLES; TIMSK3 = _BV(ICIE3); PTT_DDR |= _BV(PTT_PIN); PTT_DDR |= _BV(PTT_NEG_PIN); } void AFSK_adc_init(void) { // Set Timer1 to normal operation TCCR1A = 0; TCCR1B = _BV(WGM13) | // Enable Timer1 Waveform Generation Mode 12: _BV(WGM12) | // Mode = CTC, TOP = ICR1 _BV(CS10); // Set clock source to 0b001 = System clock without prescaling // Set ICR1 register to the amount of ticks needed between // each sample capture/synthesis ICR1 = ADC_TICKS_BETWEEN_SAMPLES; // Set ADMUX register to use external AREF, channel ADC0 // and left adjust result ADMUX = _BV(ADLAR) | 0; // Set ADC port directions and outputs // TODO: Check this ADC_DDR &= ~_BV(0); // 0b11111110 - All pins are outputs, except ADC0 ADC_PORT &= 0x00; // 0b00000000 - All pins are at GND level // Set Digital Input Disable Register mask to 0b00000001, // which disables the input buffer on ADC0 pin to avoid // current through the pin. DIDR0 |= _BV(0); ADCSRB = _BV(ADTS2) | _BV(ADTS1) | _BV(ADTS0); // Set ADC Trigger Source to 0b111 = Timer1 Capture Event ADCSRA = _BV(ADEN) | // ADC Enable _BV(ADSC) | // ADC Start Conversion _BV(ADATE)| // ADC Interrupt Flag _BV(ADIE) | // ADC Interrupt Enable _BV(ADPS0)| _BV(ADPS2); // Set ADC prescaler bits to 0b101 = 32 // At 20MHz, this gives an ADC clock of 625 KHz } void AFSK_init(Afsk *afsk) { // Allocate modem struct memory memset(afsk, 0, sizeof(*afsk)); AFSK_modem = afsk; // Set phase increment afsk->phaseInc = MARK_INC; afsk->silentSamples = 0; // Initialise FIFO buffers fifo_init(&afsk->delayFifo, (uint8_t *)afsk->delayBuf, sizeof(afsk->delayBuf)); fifo_init(&afsk->rxFifo, afsk->rxBuf, sizeof(afsk->rxBuf)); fifo_init(&afsk->txFifo, afsk->txBuf, sizeof(afsk->txBuf)); // Fill delay FIFO with zeroes for (int i = 0; idelayFifo, 0); } AFSK_hw_init(); // Set up streams FILE afsk_fd = FDEV_SETUP_STREAM(afsk_putchar, afsk_getchar, _FDEV_SETUP_RW); afsk->fd = afsk_fd; } static void AFSK_txStart(Afsk *afsk) { if (!afsk->sending) { afsk->phaseInc = MARK_INC; afsk->phaseAcc = 0; afsk->bitstuffCount = 0; afsk->sending = true; afsk->sending_data = true; LED_TX_ON(); afsk->preambleLength = DIV_ROUND(custom_preamble * BITRATE, 8000); AFSK_DAC_IRQ_START(); } ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { afsk->tailLength = DIV_ROUND(custom_tail * BITRATE, 8000); } } int afsk_putchar(char c, FILE *stream) { AFSK_txStart(AFSK_modem); while(fifo_isfull_locked(&AFSK_modem->txFifo)) { /* Wait */ } fifo_push_locked(&AFSK_modem->txFifo, c); return 1; } int afsk_getchar(FILE *stream) { if (fifo_isempty_locked(&AFSK_modem->rxFifo)) { return EOF; } else { return fifo_pop_locked(&AFSK_modem->rxFifo); } } uint8_t AFSK_dac_isr(Afsk *afsk) { if (afsk->sampleIndex == 0) { if (afsk->txBit == 0) { if (fifo_isempty(&afsk->txFifo) && afsk->tailLength == 0) { AFSK_DAC_IRQ_STOP(); afsk->sending = false; afsk->sending_data = false; LED_TX_OFF(); return 0; } else { if (!afsk->bitStuff) afsk->bitstuffCount = 0; afsk->bitStuff = true; if (afsk->preambleLength == 0) { if (fifo_isempty(&afsk->txFifo)) { afsk->sending_data = false; afsk->tailLength--; afsk->currentOutputByte = HDLC_FLAG; } else { afsk->currentOutputByte = fifo_pop(&afsk->txFifo); } } else { afsk->preambleLength--; afsk->currentOutputByte = HDLC_FLAG; } if (afsk->currentOutputByte == AX25_ESC) { if (fifo_isempty(&afsk->txFifo)) { AFSK_DAC_IRQ_STOP(); afsk->sending = false; LED_TX_OFF(); return 0; } else { afsk->currentOutputByte = fifo_pop(&afsk->txFifo); } } else if (afsk->currentOutputByte == HDLC_FLAG || afsk->currentOutputByte == HDLC_RESET) { afsk->bitStuff = false; } } afsk->txBit = 0x01; } if (afsk->bitStuff && afsk->bitstuffCount >= BIT_STUFF_LEN) { afsk->bitstuffCount = 0; afsk->phaseInc = SWITCH_TONE(afsk->phaseInc); } else { if (afsk->currentOutputByte & afsk->txBit) { afsk->bitstuffCount++; } else { afsk->bitstuffCount = 0; afsk->phaseInc = SWITCH_TONE(afsk->phaseInc); } afsk->txBit <<= 1; } afsk->sampleIndex = DAC_SAMPLESPERBIT; } afsk->phaseAcc += afsk->phaseInc; afsk->phaseAcc %= SIN_LEN; afsk->sampleIndex--; return sinSample(afsk->phaseAcc); } static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) { // Initialise a return value. We start with the // assumption that all is going to end well :) bool ret = true; // Bitshift our byte of demodulated bits to // the left by one bit, to make room for the // next incoming bit hdlc->demodulatedBits <<= 1; // And then put the newest bit from the // demodulator into the byte. hdlc->demodulatedBits |= bit ? 1 : 0; // Now we'll look at the last 8 received bits, and // check if we have received a HDLC flag (01111110) if (hdlc->demodulatedBits == HDLC_FLAG) { // If we have, check that our output buffer is // not full. if (!fifo_isfull(fifo)) { // If it isn't, we'll push the HDLC_FLAG into // the buffer and indicate that we are now // receiving data. For bling we also turn // on the RX LED. fifo_push(fifo, HDLC_FLAG); hdlc->receiving = true; if (hdlc->dcd_count < DCD_MIN_COUNT) { hdlc->dcd = false; hdlc->dcd_count++; } else { hdlc->dcd = true; } #if OPEN_SQUELCH == false LED_RX_ON(); #endif } else { // If the buffer is full, we have a problem // and abort by setting the return value to // false and stopping the here. ret = false; hdlc->receiving = false; hdlc->dcd = false; hdlc->dcd_count = 0; } // Everytime we receive a HDLC_FLAG, we reset the // storage for our current incoming byte and bit // position in that byte. This effectively // synchronises our parsing to the start and end // of the received bytes. hdlc->currentByte = 0; hdlc->bitIndex = 0; return ret; } // Check if we have received a RESET flag (01111111) // In this comparison we also detect when no transmission // (or silence) is taking place, and the demodulator // returns an endless stream of zeroes. Due to the NRZ-S // coding, the actual bits sent to this function will // be an endless stream of ones, which this AND operation // will also detect. if ((hdlc->demodulatedBits & HDLC_RESET) == HDLC_RESET) { // If we have, something probably went wrong at the // transmitting end, and we abort the reception. hdlc->receiving = false; hdlc->dcd = false; hdlc->dcd_count = 0; return ret; } // Check the DCD status and set RX LED appropriately if (hdlc->dcd) { LED_RX_ON(); } else { LED_RX_OFF(); } // If we have not yet seen a HDLC_FLAG indicating that // a transmission is actually taking place, don't bother // with anything. if (!hdlc->receiving) { hdlc->dcd = false; hdlc->dcd_count = 0; return ret; } // First check if what we are seeing is a stuffed bit. // Since the different HDLC control characters like // HDLC_FLAG, HDLC_RESET and such could also occur in // a normal data stream, we employ a method known as // "bit stuffing". All control characters have more than // 5 ones in a row, so if the transmitting party detects // this sequence in the _data_ to be transmitted, it inserts // a zero to avoid the receiving party interpreting it as // a control character. Therefore, if we detect such a // "stuffed bit", we simply ignore it and wait for the // next bit to come in. // // We do the detection by applying an AND bit-mask to the // stream of demodulated bits. This mask is 00111111 (0x3f) // if the result of the operation is 00111110 (0x3e), we // have detected a stuffed bit. if ((hdlc->demodulatedBits & 0x3f) == 0x3e) return ret; // If we have an actual 1 bit, push this to the current byte // If it's a zero, we don't need to do anything, since the // bit is initialized to zero when we bitshifted earlier. if (hdlc->demodulatedBits & 0x01) hdlc->currentByte |= 0x80; // Increment the bitIndex and check if we have a complete byte if (++hdlc->bitIndex >= 8) { // If we have a HDLC control character, put a AX.25 escape // in the received data. We know we need to do this, // because at this point we must have already seen a HDLC // flag, meaning that this control character is the result // of a bitstuffed byte that is equal to said control // character, but is actually part of the data stream. // By inserting the escape character, we tell the protocol // layer that this is not an actual control character, but // data. if ((hdlc->currentByte == HDLC_FLAG || hdlc->currentByte == HDLC_RESET || hdlc->currentByte == AX25_ESC)) { // We also need to check that our received data buffer // is not full before putting more data in if (!fifo_isfull(fifo)) { fifo_push(fifo, AX25_ESC); } else { // If it is, abort and return false hdlc->receiving = false; hdlc->dcd = false; hdlc->dcd_count = 0; LED_RX_OFF(); ret = false; } } // Push the actual byte to the received data FIFO, // if it isn't full. if (!fifo_isfull(fifo)) { fifo_push(fifo, hdlc->currentByte); } else { // If it is, well, you know by now! hdlc->receiving = false; hdlc->dcd = false; hdlc->dcd_count = 0; LED_RX_OFF(); ret = false; } // Wipe received byte and reset bit index to 0 hdlc->currentByte = 0; hdlc->bitIndex = 0; } else { // We don't have a full byte yet, bitshift the byte // to make room for the next bit hdlc->currentByte >>= 1; } return ret; } void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) { // To determine the received frequency, and thereby // the bit of the sample, we multiply the sample by // a sample delayed by (samples per bit / 2). // We then lowpass-filter the samples with a // Chebyshev filter. The lowpass filtering serves // to "smooth out" the variations in the samples. afsk->iirX[0] = afsk->iirX[1]; #if CONFIG_ADC_SAMPLERATE == 4800 #if FILTER_CUTOFF == 600 #define IIR_GAIN 2 // Really 2.228465666 #define IIR_POLE 10 // Really Y[0] * 0.1025215106 afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / IIR_GAIN; afsk->iirY[0] = afsk->iirY[1]; afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / IIR_POLE); #else #error Unsupported filter cutoff! #endif #elif CONFIG_ADC_SAMPLERATE == 9600 #if FILTER_CUTOFF == 500 #define IIR_GAIN 4 // Really 4.082041675 #define IIR_POLE 2 // Really Y[0] * 0.5100490981 afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / IIR_GAIN; afsk->iirY[0] = afsk->iirY[1]; afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / IIR_POLE); #else #error Unsupported filter cutoff! #endif #elif CONFIG_ADC_SAMPLERATE == 19200 #if FILTER_CUTOFF == 150 #define IIR_GAIN 2 // Really 2.172813446e #define IIR_POLE 2 // Really Y[0] * 0.9079534415 afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / IIR_GAIN; afsk->iirY[0] = afsk->iirY[1]; afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / IIR_POLE); #elif FILTER_CUTOFF == 500 #define IIR_GAIN 7 // Really 5.006847792 #define IIR_POLE 2 // Really Y[0] * 0.6005470741 afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / IIR_GAIN; afsk->iirY[0] = afsk->iirY[1]; afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / IIR_POLE); #elif FILTER_CUTOFF == 600 #define IIR_GAIN 6 // Really 6.166411713 #define IIR_POLE 2 // Really Y[0] * 0.6756622663 afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / IIR_GAIN; afsk->iirY[0] = afsk->iirY[1]; afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / IIR_POLE); #elif FILTER_CUTOFF == 772 #define IIR_GAIN 5 // Really 5.006847792 #define IIR_POLE 2 // Really Y[0] * 0.6005470741 afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / IIR_GAIN; afsk->iirY[0] = afsk->iirY[1]; afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / IIR_POLE); #elif FILTER_CUTOFF == 1000 #define IIR_GAIN 4 // Really 4.082041675 #define IIR_POLE 2 // Really Y[0] * 0.5100490981 afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / IIR_GAIN; afsk->iirY[0] = afsk->iirY[1]; afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / IIR_POLE); #elif FILTER_CUTOFF == 1400 #define IIR_GAIN 3 // Really 3.182326364 #define IIR_POLE 3 // Really Y[0] * 0.3715289474 afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / IIR_GAIN; afsk->iirY[0] = afsk->iirY[1]; afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / IIR_POLE); #else #error Unsupported filter cutoff! #endif #else #error No filters defined for specified samplerate! #endif // We put the sampled bit in a delay-line: // First we bitshift everything 1 left afsk->sampledBits <<= 1; // And then add the sampled bit to our delay line afsk->sampledBits |= (afsk->iirY[1] > 0) ? 0 : 1; //afsk->sampledBits |= (freq_disc > 0) ? 0 : 1; // Put the current raw sample in the delay FIFO fifo_push(&afsk->delayFifo, currentSample); // We need to check whether there is a signal transition. // If there is, we can recalibrate the phase of our // sampler to stay in sync with the transmitter. A bit of // explanation is required to understand how this works. // Since we have PHASE_MAX/PHASE_BITS = 8 samples per bit, // we employ a phase counter (currentPhase), that increments // by PHASE_BITS everytime a sample is captured. When this // counter reaches PHASE_MAX, it wraps around by modulus // PHASE_MAX. We then look at the last three samples we // captured and determine if the bit was a one or a zero. // // This gives us a "window" looking into the stream of // samples coming from the ADC. Sort of like this: // // Past Future // 0000000011111111000000001111111100000000 // |________| // || // Window // // Every time we detect a signal transition, we adjust // where this window is positioned a little. How much we // adjust it is defined by PHASE_INC. If our current phase // phase counter value is less than half of PHASE_MAX (ie, // the window size) when a signal transition is detected, // add PHASE_INC to our phase counter, effectively moving // the window a little bit backward (to the left in the // illustration), inversely, if the phase counter is greater // than half of PHASE_MAX, we move it forward a little. // This way, our "window" is constantly seeking to position // it's center at the bit transitions. Thus, we synchronise // our timing to the transmitter, even if it's timing is // a little off compared to our own. if (SIGNAL_TRANSITIONED(afsk->sampledBits)) { if (afsk->currentPhase < PHASE_THRESHOLD) { afsk->currentPhase += PHASE_INC; } else { afsk->currentPhase -= PHASE_INC; } afsk->silentSamples = 0; } else { afsk->silentSamples++; } // We increment our phase counter afsk->currentPhase += PHASE_BITS; // Check if we have reached the end of // our sampling window. if (afsk->currentPhase >= PHASE_MAX) { // If we have, wrap around our phase // counter by modulus afsk->currentPhase %= PHASE_MAX; // Bitshift to make room for the next // bit in our stream of demodulated bits afsk->actualBits <<= 1; // We determine the actual bit value by reading // the last 3 sampled bits. If there is two or // more 1's, we will assume that the transmitter // sent us a one, otherwise we assume a zero uint8_t bits = afsk->sampledBits & 0x07; if (bits == 0x07 || // 111 bits == 0x06 || // 110 bits == 0x05 || // 101 bits == 0x03 // 011 ) { afsk->actualBits |= 1; } //// Alternative using six bits //////////////// // uint8_t bits = afsk->sampledBits & 0x3F; // uint8_t c = 0; // c += bits & _BV(0); // c += bits & _BV(1); // c += bits & _BV(2); // c += bits & _BV(3); // c += bits & _BV(4); // c += bits & _BV(5); // if (c >= 3) afsk->actualBits |= 1; ///////////////////////////////////////////////// // Now we can pass the actual bit to the HDLC parser. // We are using NRZ-S coding, so if 2 consecutive bits // have the same value, we have a 1, otherwise a 0. // We use the TRANSITION_FOUND function to determine this. // // This is smart in combination with bit stuffing, // since it ensures a transmitter will never send more // than five consecutive 1's. When sending consecutive // ones, the signal stays at the same level, and if // this happens for longer periods of time, we would // not be able to synchronize our phase to the transmitter // and would start experiencing "bit slip". // // By combining bit-stuffing with NRZ-S coding, we ensure // that the signal will regularly make transitions // that we can use to synchronize our phase. // // We also check the return of the Link Control parser // to check if an error occured. if (!hdlcParse(&afsk->hdlc, !TRANSITION_FOUND(afsk->actualBits), &afsk->rxFifo)) { afsk->status |= 1; if (fifo_isfull(&afsk->rxFifo)) { fifo_flush(&afsk->rxFifo); afsk->status = 0; } } } if (afsk->silentSamples > DCD_TIMEOUT_SAMPLES) { afsk->silentSamples = 0; afsk->hdlc.dcd = false; LED_RX_OFF(); } } inline void timed_functions(void) { update_led_status(); if (_clock % CLOCK_TICKS_PER_10_MS == 0) { sd_scheduler(); } } ISR(TIMER3_CAPT_vect) { if (hw_afsk_dac_isr) { DAC_PORT = AFSK_dac_isr(AFSK_modem); LED_TX_ON(); PTT_PORT |= _BV(PTT_PIN); PTT_PORT &= ~_BV(PTT_NEG_PIN); } else { LED_TX_OFF(); DAC_PORT = 127; PTT_PORT &= ~_BV(PTT_PIN); PTT_PORT |= _BV(PTT_NEG_PIN); } } ISR(ADC_vect) { TIFR1 = _BV(ICF1); if (CONFIG_FULL_DUPLEX || !hw_afsk_dac_isr) { AFSK_adc_isr(AFSK_modem, (ADCH - 128)); } timed_functions(); ++_clock; }