OpenModem/Modem/protocol/mp1.c

260 lines
7.8 KiB
C

#include "mp1.h"
#include "hardware.h"
#include <string.h>
#include <drv/ser.h>
// FIXME: Describe these
static uint8_t lastByte = 0x00;
static bool sendParityBlock = false;
// FIXME: Describe this
INLINE bool BIT(uint8_t byte, int n) { return ((byte & BV(n-1))>>(n-1)); }
static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) {
uint8_t parity = 0x00;
parity = ((BIT(first, 1) ^ BIT(first, 2) ^ BIT(first, 4) ^ BIT(first, 5) ^ BIT(first, 7))) +
((BIT(first, 1) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 6) ^ BIT(first, 7))<<1) +
((BIT(first, 2) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 8))<<2) +
((BIT(first, 5) ^ BIT(first, 6) ^ BIT(first, 7) ^ BIT(first, 8))<<3) +
((BIT(other, 1) ^ BIT(other, 2) ^ BIT(other, 4) ^ BIT(other, 5) ^ BIT(other, 7))<<4) +
((BIT(other, 1) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 6) ^ BIT(other, 7))<<5) +
((BIT(other, 2) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 8))<<6) +
((BIT(other, 5) ^ BIT(other, 6) ^ BIT(other, 7) ^ BIT(other, 8))<<7);
return parity;
}
static void mp1Decode(MP1 *mp1) {
// This decode function is basic and bare minimum.
// It does nothing more than extract the data
// payload from the buffer and put it into a struct
// for further processing.
MP1Packet packet; // A decoded packet struct
uint8_t *buffer = mp1->buffer; // Get the buffer from the protocol context
// Get the header and "remove" it from the buffer
uint8_t header = buffer[0];
buffer++;
// If header indicates a padded packet, remove
// padding
if (header & 0x01) {
buffer++;
}
// Set the payload length of the packet to the counted
// length minus 1, so we remove the checksum
packet.dataLength = mp1->packetLength - 2 - (header & 0x01);
packet.data = buffer;
// If a callback have been specified, let's
// call it and pass the decoded packet
if (mp1->callback) mp1->callback(&packet);
}
////////////////////////////////////////////////////////////
// The Poll function reads data from the modem, handles //
// frame recognition and passes data on to higher layers //
// if valid packets are found //
////////////////////////////////////////////////////////////
void mp1Poll(MP1 *mp1) {
int byte; // A place to store our read byte
sendParityBlock = false; // Reset our parity tx indicator
// Read bytes from the modem until we reach EOF
while ((byte = kfile_getc(mp1->modem)) != EOF) {
// We have a byte, increment our read counter
// FIXME: Describe error correction
if (mp1->reading && (byte != AX25_ESC) ) {
mp1->readLength++;
if (mp1->readLength % 3 == 0) {
mp1->calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]);
uint8_t syndrome = mp1->calculatedParity ^ byte;
if (syndrome == 0x00) {
// No problems!
} else {
uint8_t syndromes[2];
syndromes[0] = syndrome & 0x0f;
syndromes[1] = (syndrome & 0xf0) >> 4;
for (int i = 0; i < 2; i++) {
uint8_t s = syndromes[i];
uint8_t correction = 0x00;
if (s == 1 || s == 2 || s == 4 || s == 8) {
// Error in parity bit, no correction needed
continue;
}
if (s == 3) correction = 0x01;
if (s == 5) correction = 0x02;
if (s == 6) correction = 0x04;
if (s == 7) correction = 0x08;
if (s == 9) correction = 0x10;
if (s == 10) correction = 0x20;
if (s == 11) correction = 0x40;
if (s == 12) correction = 0x80;
if (correction != 0x00) {
mp1->checksum_in ^= correction;
}
mp1->buffer[mp1->packetLength-(2-i)] ^= correction;
}
}
continue;
}
}
// FIXME: Describe error correction //////////
if (!mp1->escape && byte == HDLC_FLAG) {
// We are not in an escape sequence and we
// found a HDLC_FLAG. This can mean two things:
if (mp1->packetLength >= MP1_MIN_FRAME_LENGTH) {
// We already have more data than the minimum
// frame length, which means the flag signifies
// the end of the packet. Pass control to the
// decoder.
if ((mp1->checksum_in & 0xff) == 0x00) {
kprintf("[OK] ");
mp1Decode(mp1);
} else {
// Checksum was incorrect, we don't do anything,
// but you can enable the decode anyway, if you
// need it for testing or debugging
kprintf("[ER] [%d] ", mp1->checksum_in);
mp1Decode(mp1);
}
}
// If the above is not the case, this must be the
// beginning of a frame
mp1->reading = true;
mp1->packetLength = 0;
mp1->readLength = 0;
mp1->checksum_in = MP1_CHECKSUM_INIT;
// We have indicated that we are reading,
// and reset the length counter. Now we'll
// continue to the next byte.
continue;
}
if (!mp1->escape && byte == HDLC_RESET) {
// Not good, we got a reset. The transmitting
// party may have encountered an error. We'll
// stop receiving this packet immediately.
mp1->reading = false;
continue;
}
// This should be a parity byte
if (!mp1->escape && byte == AX25_ESC) {
// We found an escape character. We'll set
// the escape seqeunce indicator so we don't
// interpret the next byte as a reset or flag
mp1->escape = true;
continue;
}
// Now let's get to the actual reading of the data
if (mp1->reading) {
if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) {
// If the length of the current incoming frame is
// still less than our max length, put the incoming
// byte in the buffer.
mp1->checksum_in = mp1->checksum_in ^ byte;
mp1->buffer[mp1->packetLength++] = byte;
} else {
// If not, we have a problem: The buffer has overrun
// We need to stop receiving, and the packet will be
// dropped :(
mp1->reading = false;
}
}
// We need to set the escape sequence indicator back
// to false after each byte.
mp1->escape = false;
}
if (kfile_error(mp1->modem)) {
// If there was an error from the modem, we'll be rude
// and just reset it. No error handling is done for now.
kfile_clearerr(mp1->modem);
}
}
// FIXME: Desribe additions here
static void mp1Putbyte(MP1 *mp1, uint8_t byte) {
// If we are sending something that looks
// like an HDLC special byte, send an escape
// character first
if (byte == HDLC_FLAG ||
byte == HDLC_RESET ||
byte == AX25_ESC) {
kfile_putc(AX25_ESC, mp1->modem);
lastByte = AX25_ESC;
//sendParityBlock ^= true;
}
kfile_putc(byte, mp1->modem);
if (sendParityBlock) {
uint8_t p = mp1ParityBlock(lastByte, byte);
kfile_putc(p, mp1->modem);
}
lastByte = byte;
sendParityBlock ^= true;
}
void mp1Send(MP1 *mp1, const void *_buffer, size_t length) {
// Get the transmit data buffer
const uint8_t *buffer = (const uint8_t *)_buffer;
// Initialize checksum
mp1->checksum_out = MP1_CHECKSUM_INIT;
// Transmit the HDLC_FLAG to signify start of TX
kfile_putc(HDLC_FLAG, mp1->modem);
// Write header and possibly padding
// Remember we also write a header and
// a checksum. This ensures that we will
// always end our packet with a checksum
// and a parity byte.
if (length % 2 != 0) {
mp1->checksum_out = mp1->checksum_out ^ 0xf1;
mp1Putbyte(mp1, 0xf1);
mp1->checksum_out = mp1->checksum_out ^ 0x55;
mp1Putbyte(mp1, 0x55);
} else {
mp1->checksum_out = mp1->checksum_out ^ 0xf0;
mp1Putbyte(mp1, 0xf0);
}
// Continously increment the pointer address
// of the buffer while passing it to the byte
// output function
while (length--) {
mp1->checksum_out = mp1->checksum_out ^ *buffer;
mp1Putbyte(mp1, *buffer++);
}
// Write checksum to end of packet
mp1Putbyte(mp1, mp1->checksum_out);
// Transmit a HDLC_FLAG to signify end of TX
kfile_putc(HDLC_FLAG, mp1->modem);
}
void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) {
// Allocate memory for our protocol "object"
memset(mp1, 0, sizeof(*mp1));
// Set references to our modem "object" and
// a callback for when a packet has been decoded
mp1->modem = modem;
mp1->callback = callback;
}