Improved power management for v2 RNodes and T-Beam devices

This commit is contained in:
Mark Qvist 2022-12-16 19:59:30 +01:00
parent 6a221ec67a
commit 6052c8cb40
4 changed files with 133 additions and 41 deletions

View File

@ -306,7 +306,9 @@
#define BATTERY_STATE_CHARGING 0x02 #define BATTERY_STATE_CHARGING 0x02
#define BATTERY_STATE_CHARGED 0x03 #define BATTERY_STATE_CHARGED 0x03
bool battery_installed = false; bool battery_installed = false;
bool battery_indeterminate = false;
bool external_power = false; bool external_power = false;
bool battery_ready = false;
float battery_voltage = 0.0; float battery_voltage = 0.0;
float battery_percent = 0.0; float battery_percent = 0.0;
uint8_t battery_state = 0x00; uint8_t battery_state = 0x00;

View File

@ -168,21 +168,45 @@ void draw_mw_icon(int px, int py) {
uint8_t charge_tick = 0; uint8_t charge_tick = 0;
void draw_battery_bars(int px, int py) { void draw_battery_bars(int px, int py) {
if (pmu_ready) { if (pmu_ready) {
float battery_value = battery_percent; if (battery_ready) {
if (battery_state == BATTERY_STATE_CHARGING) { if (battery_installed) {
battery_value = charge_tick; float battery_value = battery_percent;
charge_tick += 3;
if (charge_tick > 100) charge_tick = 0;
}
stat_area.fillRect(px, py, 14, 3, SSD1306_BLACK); if (battery_state == BATTERY_STATE_CHARGING) {
if (battery_value > 7) stat_area.drawLine(px, py, px, py+2, SSD1306_WHITE); battery_value = charge_tick;
if (battery_value > 20) stat_area.drawLine(px+1*2, py, px+1*2, py+2, SSD1306_WHITE); charge_tick += 3;
if (battery_value > 33) stat_area.drawLine(px+2*2, py, px+2*2, py+2, SSD1306_WHITE); if (charge_tick > 100) charge_tick = 0;
if (battery_value > 46) stat_area.drawLine(px+3*2, py, px+3*2, py+2, SSD1306_WHITE); }
if (battery_value > 59) stat_area.drawLine(px+4*2, py, px+4*2, py+2, SSD1306_WHITE);
if (battery_value > 72) stat_area.drawLine(px+5*2, py, px+5*2, py+2, SSD1306_WHITE); if (battery_indeterminate && battery_state == BATTERY_STATE_CHARGING) {
if (battery_value > 85) stat_area.drawLine(px+6*2, py, px+6*2, py+2, SSD1306_WHITE); stat_area.fillRect(px-2, py-2, 18, 7, SSD1306_BLACK);
stat_area.drawBitmap(px-2, py-2, bm_plug, 17, 7, SSD1306_WHITE, SSD1306_BLACK);
} else {
if (battery_state == BATTERY_STATE_CHARGED) {
stat_area.fillRect(px-2, py-2, 18, 7, SSD1306_BLACK);
stat_area.drawBitmap(px-2, py-2, bm_plug, 17, 7, SSD1306_WHITE, SSD1306_BLACK);
} else {
// stat_area.fillRect(px, py, 14, 3, SSD1306_BLACK);
stat_area.fillRect(px-2, py-2, 18, 7, SSD1306_BLACK);
stat_area.drawRect(px-2, py-2, 17, 7, SSD1306_WHITE);
stat_area.drawLine(px+15, py, px+15, py+3, SSD1306_WHITE);
if (battery_value > 7) stat_area.drawLine(px, py, px, py+2, SSD1306_WHITE);
if (battery_value > 20) stat_area.drawLine(px+1*2, py, px+1*2, py+2, SSD1306_WHITE);
if (battery_value > 33) stat_area.drawLine(px+2*2, py, px+2*2, py+2, SSD1306_WHITE);
if (battery_value > 46) stat_area.drawLine(px+3*2, py, px+3*2, py+2, SSD1306_WHITE);
if (battery_value > 59) stat_area.drawLine(px+4*2, py, px+4*2, py+2, SSD1306_WHITE);
if (battery_value > 72) stat_area.drawLine(px+5*2, py, px+5*2, py+2, SSD1306_WHITE);
if (battery_value > 85) stat_area.drawLine(px+6*2, py, px+6*2, py+2, SSD1306_WHITE);
}
}
} else {
stat_area.fillRect(px-2, py-2, 18, 7, SSD1306_BLACK);
stat_area.drawBitmap(px-2, py-2, bm_plug, 17, 7, SSD1306_WHITE, SSD1306_BLACK);
}
}
} else {
stat_area.fillRect(px-2, py-2, 18, 7, SSD1306_BLACK);
stat_area.drawBitmap(px-2, py-2, bm_plug, 17, 7, SSD1306_WHITE, SSD1306_BLACK);
} }
} }

View File

@ -203,10 +203,10 @@ const unsigned char bm_frame [] PROGMEM = {
0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7f, 0xfe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7f, 0xfe, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x3f, 0xff, 0xe0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x20, 0xc0, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x00, 0x1c,
0x20, 0x00, 0x31, 0x20, 0x00, 0x00, 0x00, 0x20, 0x20, 0x00, 0x31, 0x20, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x01, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x01, 0x20, 0x00, 0x00, 0x00, 0x18,
0x20, 0x00, 0x31, 0x40, 0x00, 0x00, 0x00, 0x04, 0x20, 0x00, 0x20, 0xa0, 0x00, 0x00, 0x00, 0x38, 0x00, 0x00, 0x01, 0x40, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xa0, 0x00, 0x00, 0x00, 0x38,
0x3f, 0xff, 0xe0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0xaa, 0x8a, 0xaa, 0x80 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0xaa, 0x8a, 0xaa, 0x80
}; };
const unsigned char bm_checks [] PROGMEM = { const unsigned char bm_checks [] PROGMEM = {
@ -317,3 +317,8 @@ const unsigned char bm_n_uh [] PROGMEM = {
0x07, 0x27, 0x07, 0x07, 0xc7, 0xcf, 0x9f, 0x1f, 0x07, 0x27, 0x07, 0x27, 0x07, 0x07, 0x27, 0x07, 0x07, 0x27, 0x07, 0x07, 0xc7, 0xcf, 0x9f, 0x1f, 0x07, 0x27, 0x07, 0x27, 0x07, 0x07, 0x27, 0x07,
0xe7, 0xe7 0xe7, 0xe7
}; };
const unsigned char bm_plug [] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x7f, 0x80, 0x55, 0xfc, 0x00, 0xaa, 0xfc, 0x00, 0x00,
0x7f, 0x80, 0x00, 0x1c, 0x00
};

105
Power.h
View File

@ -2,18 +2,31 @@
#include <axp20x.h> #include <axp20x.h>
AXP20X_Class PMU; AXP20X_Class PMU;
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.14
void disablePeripherals() { void disablePeripherals() {
PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF); PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF);
PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF);
PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
} }
#elif BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 #elif BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
#define BAT_V_INSTALLED 3.0 #define BAT_C_SAMPLES 7
#define BAT_V_MIN 3.4 #define BAT_D_SAMPLES 2
#define BAT_V_MAX 4.2 #define BAT_V_MIN 3.15
#define BAT_V_CHG 4.345 #define BAT_V_MAX 4.3
#define BAT_V_CHGD 4.31 #define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 5
const uint8_t pin_vbat = 35; const uint8_t pin_vbat = 35;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
#endif #endif
uint32_t last_pmu_update = 0; uint32_t last_pmu_update = 0;
@ -22,28 +35,68 @@ int pmu_update_interval = 1000/pmu_target_pps;
void measure_battery() { void measure_battery() {
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 #if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
battery_voltage = (float)(analogRead(pin_vbat)) / 4095*2*3.3*1.1; battery_installed = true;
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0; battery_indeterminate = true;
bat_v_samples[bat_samples_count%BAT_SAMPLES] = (float)(analogRead(pin_vbat)) / 4095*2*3.3*1.1;
bat_p_samples[bat_samples_count%BAT_SAMPLES] = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
if (battery_voltage > BAT_V_INSTALLED) { battery_installed = true; } else { battery_installed = false; } bat_samples_count++;
if (battery_percent > 100.0) battery_percent = 100.0; if (!battery_ready && bat_samples_count >= BAT_SAMPLES) {
battery_ready = true;
}
if (battery_voltage > BAT_V_CHG) { if (battery_ready) {
battery_state = BATTERY_STATE_CHARGING;
// Serial.printf("Battery charging. Voltage=%.2fv, percentage: %.2f%\n", battery_voltage, battery_percent); battery_percent = 0;
} else if (battery_voltage > BAT_V_CHGD) { for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
battery_state = BATTERY_STATE_CHARGED; battery_percent += bat_p_samples[bi];
// Serial.printf("Battery charged. Voltage=%.2fv, percentage: %.2f%\n", battery_voltage, battery_percent); }
} else { battery_percent = battery_percent/BAT_SAMPLES;
battery_state = BATTERY_STATE_DISCHARGING;
// Serial.printf("Battery discharging. Voltage=%.2fv, percentage: %.2f%\n", battery_voltage, battery_percent); battery_voltage = 0;
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
battery_voltage += bat_v_samples[bi];
}
battery_voltage = battery_voltage/BAT_SAMPLES;
if (bat_delay_v == 0) bat_delay_v = battery_voltage;
if (battery_percent > 100.0) battery_percent = 100.0;
if (battery_percent < 0.0) battery_percent = 0.0;
if (bat_samples_count%BAT_SAMPLES == 0) {
if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) {
bat_voltage_dropping = true;
} else {
bat_voltage_dropping = false;
}
bat_samples_count = 0;
}
if (bat_voltage_dropping && battery_voltage < BAT_V_FLOAT) {
battery_state = BATTERY_STATE_DISCHARGING;
} else {
#if BOARD_MODEL == BOARD_RNODE_NG_21
battery_state = BATTERY_STATE_CHARGING;
#else
battery_state = BATTERY_STATE_DISCHARGING;
#endif
}
// if (bt_state == BT_STATE_CONNECTED) {
// SerialBT.printf("Bus voltage %.3fv. Unfiltered %.3fv.", battery_voltage, bat_v_samples[BAT_SAMPLES-1]);
// if (bat_voltage_dropping) {
// SerialBT.printf(" Voltage is dropping. Percentage %.1f%%.\n", battery_percent);
// } else {
// SerialBT.print(" Voltage is not dropping.\n");
// }
// }
} }
#elif BOARD_MODEL == BOARD_TBEAM #elif BOARD_MODEL == BOARD_TBEAM
float discharge_current = PMU.getBattDischargeCurrent(); float discharge_current = PMU.getBattDischargeCurrent();
float charge_current = PMU.getBattChargeCurrent(); float charge_current = PMU.getBattChargeCurrent();
battery_voltage = PMU.getBattVoltage()/1000.0; battery_voltage = PMU.getBattVoltage()/1000.0;
battery_percent = PMU.getBattPercentage()*1.0; // battery_percent = PMU.getBattPercentage()*1.0;
battery_installed = PMU.isBatteryConnect(); battery_installed = PMU.isBatteryConnect();
external_power = PMU.isVBUSPlug(); external_power = PMU.isVBUSPlug();
float ext_voltage = PMU.getVbusVoltage()/1000.0; float ext_voltage = PMU.getVbusVoltage()/1000.0;
@ -52,11 +105,14 @@ void measure_battery() {
if (battery_installed) { if (battery_installed) {
if (PMU.isChargeing()) { if (PMU.isChargeing()) {
battery_state = BATTERY_STATE_CHARGING; battery_state = BATTERY_STATE_CHARGING;
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
} else { } else {
if (discharge_current > 0.0) { if (discharge_current > 0.0) {
battery_state = BATTERY_STATE_DISCHARGING; battery_state = BATTERY_STATE_DISCHARGING;
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
} else { } else {
battery_state = BATTERY_STATE_CHARGED; battery_state = BATTERY_STATE_CHARGED;
battery_percent = 100.0;
} }
} }
} else { } else {
@ -65,10 +121,15 @@ void measure_battery() {
battery_voltage = 0.0; battery_voltage = 0.0;
} }
if (battery_percent > 100.0) battery_percent = 100.0;
if (battery_percent < 0.0) battery_percent = 0.0;
float charge_watts = battery_voltage*(charge_current/1000.0); float charge_watts = battery_voltage*(charge_current/1000.0);
float discharge_watts = battery_voltage*(discharge_current/1000.0); float discharge_watts = battery_voltage*(discharge_current/1000.0);
float ext_watts = ext_voltage*(ext_current/1000.0); float ext_watts = ext_voltage*(ext_current/1000.0);
battery_ready = true;
// if (bt_state == BT_STATE_CONNECTED) { // if (bt_state == BT_STATE_CONNECTED) {
// if (battery_installed) { // if (battery_installed) {
// if (external_power) { // if (external_power) {
@ -76,8 +137,8 @@ void measure_battery() {
// } else { // } else {
// SerialBT.println("Running on battery"); // SerialBT.println("Running on battery");
// } // }
// SerialBT.printf("Battery percentage %.1f%\n", battery_percent); // SerialBT.printf("Battery percentage %.1f%%\n", battery_percent);
// SerialBT.printf("Battery voltage %.1f%\n", battery_voltage); // SerialBT.printf("Battery voltage %.2fv\n", battery_voltage);
// // SerialBT.printf("Temperature %.1f%\n", auxillary_temperature); // // SerialBT.printf("Temperature %.1f%\n", auxillary_temperature);
// if (battery_state == BATTERY_STATE_CHARGING) { // if (battery_state == BATTERY_STATE_CHARGING) {
@ -85,7 +146,7 @@ void measure_battery() {
// } else if (battery_state == BATTERY_STATE_DISCHARGING) { // } else if (battery_state == BATTERY_STATE_DISCHARGING) {
// SerialBT.printf("Discharging at %.2fw, %.1fmA at %.1fV\n", discharge_watts, discharge_current, battery_voltage); // SerialBT.printf("Discharging at %.2fw, %.1fmA at %.1fV\n", discharge_watts, discharge_current, battery_voltage);
// } else if (battery_state == BATTERY_STATE_CHARGED) { // } else if (battery_state == BATTERY_STATE_CHARGED) {
// SerialBT.printf("Battely charged\n"); // SerialBT.printf("Battery charged\n");
// } // }
// } else { // } else {
// SerialBT.println("No battery installed"); // SerialBT.println("No battery installed");