Work on ESP32 compatibility

This commit is contained in:
Mark Qvist 2022-01-10 22:14:30 +01:00
parent 9ba4ceaa12
commit 8a51a03a24
3 changed files with 154 additions and 126 deletions

View File

@ -4,7 +4,7 @@
#define CONFIG_H #define CONFIG_H
#define MAJ_VERS 0x01 #define MAJ_VERS 0x01
#define MIN_VERS 0x14 #define MIN_VERS 0x15
#define PLATFORM_AVR 0x90 #define PLATFORM_AVR 0x90
#define PLATFORM_ESP32 0x80 #define PLATFORM_ESP32 0x80
@ -45,8 +45,6 @@
const int pin_led_rx = 12; const int pin_led_rx = 12;
const int pin_led_tx = 13; const int pin_led_tx = 13;
const long serial_baudrate = 115200;
#define CONFIG_UART_BUFFER_SIZE 6144 #define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144 #define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 250 #define CONFIG_QUEUE_MAX_LENGTH 250
@ -61,8 +59,6 @@
const int pin_led_rx = 12; const int pin_led_rx = 12;
const int pin_led_tx = 13; const int pin_led_tx = 13;
const long serial_baudrate = 115200;
#define CONFIG_UART_BUFFER_SIZE 2048 #define CONFIG_UART_BUFFER_SIZE 2048
#define CONFIG_QUEUE_SIZE 2048 #define CONFIG_QUEUE_SIZE 2048
#define CONFIG_QUEUE_MAX_LENGTH 80 #define CONFIG_QUEUE_MAX_LENGTH 80
@ -77,8 +73,6 @@
const int pin_led_rx = 2; const int pin_led_rx = 2;
const int pin_led_tx = 4; const int pin_led_tx = 4;
const long serial_baudrate = 921600;
#define CONFIG_UART_BUFFER_SIZE 6144 #define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144 #define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 250 #define CONFIG_QUEUE_MAX_LENGTH 250
@ -90,6 +84,7 @@
#define eeprom_addr(a) (a+EEPROM_OFFSET) #define eeprom_addr(a) (a+EEPROM_OFFSET)
// MCU independent configuration parameters // MCU independent configuration parameters
const long serial_baudrate = 115200;
const int lora_rx_turnaround_ms = 50; const int lora_rx_turnaround_ms = 50;
// SX1276 RSSI offset to get dBm value from // SX1276 RSSI offset to get dBm value from

View File

@ -21,6 +21,14 @@ volatile bool serial_buffering = false;
char sbuf[128]; char sbuf[128];
#if MCU_VARIANT == MCU_ESP32
#include "soc/rtc_wdt.h"
#define ISR_VECT IRAM_ATTR
bool packet_ready = false;
#else
#define ISR_VECT
#endif
void setup() { void setup() {
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
delay(500); delay(500);
@ -62,9 +70,14 @@ void setup() {
LoRa.setPins(pin_cs, pin_reset, pin_dio); LoRa.setPins(pin_cs, pin_reset, pin_dio);
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
radio_locked = true; // ESP32-specific initialisation
radio_online = false; // The WDT is disabled for now. This
hw_ready = false; // should be re-enabled as soon as any
// Core0-related features are used
rtc_wdt_protect_off();
rtc_wdt_disable();
// rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_SYSTEM);
// rtc_wdt_set_time(RTC_WDT_STAGE0, 25);
#endif #endif
// Validate board health, EEPROM and config // Validate board health, EEPROM and config
@ -79,6 +92,134 @@ void lora_receive() {
} }
} }
inline void kiss_write_packet() {
Serial.write(FEND);
Serial.write(CMD_DATA);
for (int i = 0; i < read_len; i++) {
uint8_t byte = pbuf[i];
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
Serial.write(byte);
}
Serial.write(FEND);
read_len = 0;
#if MCU_VARIANT == MCU_ESP32
packet_ready = false;
#endif
}
void ISR_VECT receive_callback(int packet_size) {
if (!promisc) {
// The standard operating mode allows large
// packets with a payload up to 500 bytes,
// by combining two raw LoRa packets.
// We read the 1-byte header and extract
// packet sequence number and split flags
uint8_t header = LoRa.read(); packet_size--;
uint8_t sequence = packetSequence(header);
bool ready = false;
if (isSplitPacket(header) && seq == SEQ_UNSET) {
// This is the first part of a split
// packet, so we set the seq variable
// and add the data to the buffer
read_len = 0;
seq = sequence;
#if MCU_VARIANT != MCU_ESP32
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
#endif
getPacketData(packet_size);
} else if (isSplitPacket(header) && seq == sequence) {
// This is the second part of a split
// packet, so we add it to the buffer
// and set the ready flag.
#if MCU_VARIANT != MCU_ESP32
last_rssi = (last_rssi+LoRa.packetRssi())/2;
last_snr_raw = (last_snr_raw+LoRa.packetSnrRaw())/2;
#endif
getPacketData(packet_size);
seq = SEQ_UNSET;
ready = true;
} else if (isSplitPacket(header) && seq != sequence) {
// This split packet does not carry the
// same sequence id, so we must assume
// that we are seeing the first part of
// a new split packet.
read_len = 0;
seq = sequence;
#if MCU_VARIANT != MCU_ESP32
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
#endif
getPacketData(packet_size);
} else if (!isSplitPacket(header)) {
// This is not a split packet, so we
// just read it and set the ready
// flag to true.
if (seq != SEQ_UNSET) {
// If we already had part of a split
// packet in the buffer, we clear it.
read_len = 0;
seq = SEQ_UNSET;
}
#if MCU_VARIANT != MCU_ESP32
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
#endif
getPacketData(packet_size);
ready = true;
}
if (ready) {
#if MCU_VARIANT != MCU_ESP32
// We first signal the RSSI of the
// recieved packet to the host.
kiss_indicate_stat_rssi();
kiss_indicate_stat_snr();
// And then write the entire packet
kiss_write_packet();
#else
packet_ready = true;
#endif
}
} else {
#if MCU_VARIANT != MCU_ESP32
// In promiscuous mode, raw packets are
// output directly to the host
read_len = 0;
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
// We first signal the RSSI of the
// recieved packet to the host.
kiss_indicate_stat_rssi();
kiss_indicate_stat_snr();
// And then write the entire packet
kiss_write_packet();
#else
// Promiscous mode is not supported on ESP32 for now
getPacketData(packet_size);
read_len = 0;
#endif
}
}
bool startRadio() { bool startRadio() {
update_radio_lock(); update_radio_lock();
if (!radio_online) { if (!radio_online) {
@ -101,9 +242,7 @@ bool startRadio() {
LoRa.enableCrc(); LoRa.enableCrc();
#if MCU_VARIANT != MCU_ESP32
LoRa.onReceive(receive_callback); LoRa.onReceive(receive_callback);
#endif
lora_receive(); lora_receive();
@ -140,108 +279,6 @@ void update_radio_lock() {
} }
} }
void receive_callback(int packet_size) {
if (!promisc) {
// The standard operating mode allows large
// packets with a payload up to 500 bytes,
// by combining two raw LoRa packets.
// We read the 1-byte header and extract
// packet sequence number and split flags
uint8_t header = LoRa.read(); packet_size--;
uint8_t sequence = packetSequence(header);
bool ready = false;
if (isSplitPacket(header) && seq == SEQ_UNSET) {
// This is the first part of a split
// packet, so we set the seq variable
// and add the data to the buffer
read_len = 0;
seq = sequence;
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
} else if (isSplitPacket(header) && seq == sequence) {
// This is the second part of a split
// packet, so we add it to the buffer
// and set the ready flag.
last_rssi = (last_rssi+LoRa.packetRssi())/2;
last_snr_raw = (last_snr_raw+LoRa.packetSnrRaw())/2;
getPacketData(packet_size);
seq = SEQ_UNSET;
ready = true;
} else if (isSplitPacket(header) && seq != sequence) {
// This split packet does not carry the
// same sequence id, so we must assume
// that we are seeing the first part of
// a new split packet.
read_len = 0;
seq = sequence;
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
} else if (!isSplitPacket(header)) {
// This is not a split packet, so we
// just read it and set the ready
// flag to true.
if (seq != SEQ_UNSET) {
// If we already had part of a split
// packet in the buffer, we clear it.
read_len = 0;
seq = SEQ_UNSET;
}
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
ready = true;
}
if (ready) {
// We first signal the RSSI of the
// recieved packet to the host.
kiss_indicate_stat_rssi();
kiss_indicate_stat_snr();
// And then write the entire packet
Serial.write(FEND);
Serial.write(CMD_DATA);
for (int i = 0; i < read_len; i++) {
uint8_t byte = pbuf[i];
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
Serial.write(byte);
}
Serial.write(FEND);
read_len = 0;
}
} else {
// In promiscuous mode, raw packets are
// output directly to the host
read_len = 0;
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
// We first signal the RSSI of the
// recieved packet to the host.
kiss_indicate_stat_rssi();
kiss_indicate_stat_snr();
// And then write the entire packet
Serial.write(FEND);
Serial.write(CMD_DATA);
for (int i = 0; i < read_len; i++) {
uint8_t byte = pbuf[i];
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
Serial.write(byte);
}
Serial.write(FEND);
read_len = 0;
}
}
bool queueFull() { bool queueFull() {
return (queue_height >= CONFIG_QUEUE_MAX_LENGTH || queued_bytes >= CONFIG_QUEUE_SIZE); return (queue_height >= CONFIG_QUEUE_MAX_LENGTH || queued_bytes >= CONFIG_QUEUE_SIZE);
} }
@ -650,9 +687,8 @@ void loop() {
checkModemStatus(); checkModemStatus();
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
int packet_size = LoRa.parsePacket(); if (packet_ready) {
if (packet_size) { kiss_write_packet();
receive_callback(packet_size);
} }
#endif #endif
@ -686,12 +722,9 @@ void loop() {
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
buffer_serial(); buffer_serial();
#endif
#if MCU_VARIANT != MCU_ESP32
if (!fifo_isempty_locked(&serialFIFO)) serial_poll();
#else
if (!fifo_isempty(&serialFIFO)) serial_poll(); if (!fifo_isempty(&serialFIFO)) serial_poll();
#else
if (!fifo_isempty_locked(&serialFIFO)) serial_poll();
#endif #endif
} }

View File

@ -381,15 +381,15 @@ void kiss_indicate_mcu() {
Serial.write(FEND); Serial.write(FEND);
} }
bool isSplitPacket(uint8_t header) { inline bool isSplitPacket(uint8_t header) {
return (header & FLAG_SPLIT); return (header & FLAG_SPLIT);
} }
uint8_t packetSequence(uint8_t header) { inline uint8_t packetSequence(uint8_t header) {
return header >> 4; return header >> 4;
} }
void getPacketData(int len) { inline void getPacketData(int len) {
while (len--) { while (len--) {
pbuf[read_len++] = LoRa.read(); pbuf[read_len++] = LoRa.read();
} }