Merge pull request #64 from jacobeva/master

Add SX1280 driver and split LoRa driver in 3 parts
This commit is contained in:
markqvist 2024-02-10 13:41:52 +01:00 committed by GitHub
commit d63c92439e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 2863 additions and 1611 deletions

View File

@ -315,9 +315,8 @@
#define HAS_NP false #define HAS_NP false
#define HAS_SD false #define HAS_SD false
#define HAS_TCXO true #define HAS_TCXO true
#define HAS_RXEN_BUSY true #define HAS_RF_SWITCH_RX_TX true
#define MODEM SX1262 #define HAS_BUSY true
#define CONFIG_UART_BUFFER_SIZE 6144 #define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144 #define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 200 #define CONFIG_QUEUE_MAX_LENGTH 200
@ -351,12 +350,16 @@
#define eeprom_addr(a) (a+EEPROM_OFFSET) #define eeprom_addr(a) (a+EEPROM_OFFSET)
#ifndef HAS_RXEN_BUSY #ifndef HAS_RF_SWITCH_RX_TX
const int pin_rxen = -1; const int pin_rxen = -1;
const int pin_txen = -1;
#endif
#ifndef HAS_BUSY
const int pin_busy = -1; const int pin_busy = -1;
#endif #endif
#if MODEM == SX1262 && defined(NRF52840_XXAA) #if (MODEM == SX1262 || MODEM == SX1280) && defined(NRF52840_XXAA)
SPIClass spiModem(NRF_SPIM2, pin_miso, pin_sclk, pin_mosi); SPIClass spiModem(NRF_SPIM2, pin_miso, pin_sclk, pin_mosi);
#endif #endif

1505
LoRa.cpp

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,4 @@
#define SX1276 0x01 #define SX1276 0x01
#define SX1278 0x02 #define SX1278 0x02
#define SX1262 0x03 #define SX1262 0x03
#define SX1280 0x04

View File

@ -93,16 +93,22 @@ void setup() {
// Set chip select, reset and interrupt // Set chip select, reset and interrupt
// pins for the LoRa module // pins for the LoRa module
LoRa.setPins(pin_cs, pin_reset, pin_dio, pin_rxen, pin_busy); #if MODEM == SX1276 || MODEM == SX1278
LoRa->setPins(pin_cs, pin_reset, pin_dio, pin_busy);
#elif MODEM == SX1262
LoRa->setPins(pin_cs, pin_reset, pin_dio, pin_busy, pin_rxen);
#elif MODEM == SX1280
LoRa->setPins(pin_cs, pin_reset, pin_dio, pin_busy, pin_rxen, pin_txen);
#endif
#if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52 #if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52
init_channel_stats(); init_channel_stats();
// Check installed transceiver chip and // Check installed transceiver chip and
// probe boot parameters. // probe boot parameters.
if (LoRa.preInit()) { if (LoRa->preInit()) {
modem_installed = true; modem_installed = true;
uint32_t lfr = LoRa.getFrequency(); uint32_t lfr = LoRa->getFrequency();
if (lfr == 0) { if (lfr == 0) {
// Normal boot // Normal boot
} else if (lfr == M_FRQ_R) { } else if (lfr == M_FRQ_R) {
@ -115,7 +121,7 @@ void setup() {
} else { } else {
// Unknown boot // Unknown boot
} }
LoRa.setFrequency(M_FRQ_S); LoRa->setFrequency(M_FRQ_S);
} else { } else {
modem_installed = false; modem_installed = false;
} }
@ -158,14 +164,14 @@ void setup() {
// Validate board health, EEPROM and config // Validate board health, EEPROM and config
validate_status(); validate_status();
if (op_mode != MODE_TNC) LoRa.setFrequency(0); if (op_mode != MODE_TNC) LoRa->setFrequency(0);
} }
void lora_receive() { void lora_receive() {
if (!implicit) { if (!implicit) {
LoRa.receive(); LoRa->receive();
} else { } else {
LoRa.receive(implicit_l); LoRa->receive(implicit_l);
} }
} }
@ -187,7 +193,7 @@ inline void kiss_write_packet() {
inline void getPacketData(uint16_t len) { inline void getPacketData(uint16_t len) {
while (len-- && read_len < MTU) { while (len-- && read_len < MTU) {
pbuf[read_len++] = LoRa.read(); pbuf[read_len++] = LoRa->read();
} }
} }
@ -198,7 +204,7 @@ void ISR_VECT receive_callback(int packet_size) {
// by combining two raw LoRa packets. // by combining two raw LoRa packets.
// We read the 1-byte header and extract // We read the 1-byte header and extract
// packet sequence number and split flags // packet sequence number and split flags
uint8_t header = LoRa.read(); packet_size--; uint8_t header = LoRa->read(); packet_size--;
uint8_t sequence = packetSequence(header); uint8_t sequence = packetSequence(header);
bool ready = false; bool ready = false;
@ -210,8 +216,8 @@ void ISR_VECT receive_callback(int packet_size) {
seq = sequence; seq = sequence;
#if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52 #if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52
last_rssi = LoRa.packetRssi(); last_rssi = LoRa->packetRssi();
last_snr_raw = LoRa.packetSnrRaw(); last_snr_raw = LoRa->packetSnrRaw();
#endif #endif
getPacketData(packet_size); getPacketData(packet_size);
@ -223,8 +229,8 @@ void ISR_VECT receive_callback(int packet_size) {
#if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52 #if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52
last_rssi = (last_rssi+LoRa.packetRssi())/2; last_rssi = (last_rssi+LoRa->packetRssi())/2;
last_snr_raw = (last_snr_raw+LoRa.packetSnrRaw())/2; last_snr_raw = (last_snr_raw+LoRa->packetSnrRaw())/2;
#endif #endif
getPacketData(packet_size); getPacketData(packet_size);
@ -241,8 +247,8 @@ void ISR_VECT receive_callback(int packet_size) {
seq = sequence; seq = sequence;
#if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52 #if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52
last_rssi = LoRa.packetRssi(); last_rssi = LoRa->packetRssi();
last_snr_raw = LoRa.packetSnrRaw(); last_snr_raw = LoRa->packetSnrRaw();
#endif #endif
getPacketData(packet_size); getPacketData(packet_size);
@ -260,8 +266,8 @@ void ISR_VECT receive_callback(int packet_size) {
} }
#if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52 #if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52
last_rssi = LoRa.packetRssi(); last_rssi = LoRa->packetRssi();
last_snr_raw = LoRa.packetSnrRaw(); last_snr_raw = LoRa->packetSnrRaw();
#endif #endif
getPacketData(packet_size); getPacketData(packet_size);
@ -287,8 +293,8 @@ void ISR_VECT receive_callback(int packet_size) {
read_len = 0; read_len = 0;
#if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52 #if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52
last_rssi = LoRa.packetRssi(); last_rssi = LoRa->packetRssi();
last_snr_raw = LoRa.packetSnrRaw(); last_snr_raw = LoRa->packetSnrRaw();
getPacketData(packet_size); getPacketData(packet_size);
// We first signal the RSSI of the // We first signal the RSSI of the
@ -310,7 +316,7 @@ bool startRadio() {
update_radio_lock(); update_radio_lock();
if (!radio_online && !console_active) { if (!radio_online && !console_active) {
if (!radio_locked && hw_ready) { if (!radio_locked && hw_ready) {
if (!LoRa.begin(lora_freq)) { if (!LoRa->begin(lora_freq)) {
// The radio could not be started. // The radio could not be started.
// Indicate this failure over both the // Indicate this failure over both the
// serial port and with the onboard LEDs // serial port and with the onboard LEDs
@ -329,9 +335,9 @@ bool startRadio() {
setCodingRate(); setCodingRate();
getFrequency(); getFrequency();
LoRa.enableCrc(); LoRa->enableCrc();
LoRa.onReceive(receive_callback); LoRa->onReceive(receive_callback);
lora_receive(); lora_receive();
@ -360,7 +366,7 @@ bool startRadio() {
} }
void stopRadio() { void stopRadio() {
LoRa.end(); LoRa->end();
radio_online = false; radio_online = false;
} }
@ -469,23 +475,23 @@ void transmit(uint16_t size) {
header = header | FLAG_SPLIT; header = header | FLAG_SPLIT;
} }
LoRa.beginPacket(); LoRa->beginPacket();
LoRa.write(header); written++; LoRa->write(header); written++;
for (uint16_t i=0; i < size; i++) { for (uint16_t i=0; i < size; i++) {
LoRa.write(tbuf[i]); LoRa->write(tbuf[i]);
written++; written++;
if (written == 255) { if (written == 255) {
LoRa.endPacket(); add_airtime(written); LoRa->endPacket(); add_airtime(written);
LoRa.beginPacket(); LoRa->beginPacket();
LoRa.write(header); LoRa->write(header);
written = 1; written = 1;
} }
} }
LoRa.endPacket(); add_airtime(written); LoRa->endPacket(); add_airtime(written);
} else { } else {
// In promiscuous mode, we only send out // In promiscuous mode, we only send out
// plain raw LoRa packets with a maximum // plain raw LoRa packets with a maximum
@ -501,17 +507,17 @@ void transmit(uint16_t size) {
// If implicit header mode has been set, // If implicit header mode has been set,
// set packet length to payload data length // set packet length to payload data length
if (!implicit) { if (!implicit) {
LoRa.beginPacket(); LoRa->beginPacket();
} else { } else {
LoRa.beginPacket(size); LoRa->beginPacket(size);
} }
for (uint16_t i=0; i < size; i++) { for (uint16_t i=0; i < size; i++) {
LoRa.write(tbuf[i]); LoRa->write(tbuf[i]);
written++; written++;
} }
LoRa.endPacket(); add_airtime(written); LoRa->endPacket(); add_airtime(written);
} }
} else { } else {
kiss_indicate_error(ERROR_TXFAILED); kiss_indicate_error(ERROR_TXFAILED);
@ -631,7 +637,7 @@ void serialCallback(uint8_t sbyte) {
kiss_indicate_spreadingfactor(); kiss_indicate_spreadingfactor();
} else { } else {
int sf = sbyte; int sf = sbyte;
if (sf < 6) sf = 6; if (sf < 5) sf = 5;
if (sf > 12) sf = 12; if (sf > 12) sf = 12;
lora_sf = sf; lora_sf = sf;
@ -938,8 +944,8 @@ void updateModemStatus() {
portENTER_CRITICAL(); portENTER_CRITICAL();
#endif #endif
uint8_t status = LoRa.modemStatus(); uint8_t status = LoRa->modemStatus();
current_rssi = LoRa.currentRssi(); current_rssi = LoRa->currentRssi();
last_status_update = millis(); last_status_update = millis();
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
@ -1158,8 +1164,8 @@ void loop() {
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
if (packet_ready) { if (packet_ready) {
portENTER_CRITICAL(&update_lock); portENTER_CRITICAL(&update_lock);
last_rssi = LoRa.packetRssi(); last_rssi = LoRa->packetRssi();
last_snr_raw = LoRa.packetSnrRaw(); last_snr_raw = LoRa->packetSnrRaw();
portEXIT_CRITICAL(&update_lock); portEXIT_CRITICAL(&update_lock);
kiss_indicate_stat_rssi(); kiss_indicate_stat_rssi();
kiss_indicate_stat_snr(); kiss_indicate_stat_snr();
@ -1173,8 +1179,8 @@ void loop() {
#elif MCU_VARIANT == MCU_NRF52 #elif MCU_VARIANT == MCU_NRF52
if (packet_ready) { if (packet_ready) {
portENTER_CRITICAL(); portENTER_CRITICAL();
last_rssi = LoRa.packetRssi(); last_rssi = LoRa->packetRssi();
last_snr_raw = LoRa.packetSnrRaw(); last_snr_raw = LoRa->packetSnrRaw();
portEXIT_CRITICAL(); portEXIT_CRITICAL();
kiss_indicate_stat_rssi(); kiss_indicate_stat_rssi();
kiss_indicate_stat_snr(); kiss_indicate_stat_snr();
@ -1199,7 +1205,7 @@ void loop() {
} }
if (!dcd) { if (!dcd) {
uint8_t csma_r = (uint8_t)random(256); uint8_t csma_r = (uint8_t)random(20); // updated to increase bitrate: todo check
if (csma_p >= csma_r) { if (csma_p >= csma_r) {
flushQueue(); flushQueue();
} else { } else {

View File

@ -22,7 +22,18 @@
int written_bytes = 0; int written_bytes = 0;
#endif #endif
#include <stddef.h> #include <stddef.h>
#include "LoRa.h"
#if MODEM == SX1262
#include "sx126x.h"
sx126x *LoRa = &sx126x_modem;
#elif MODEM == SX1276 || MODEM == SX1278
#include "sx127x.h"
sx127x *LoRa = &sx127x_modem;
#elif MODEM == SX1280
#include "sx128x.h"
sx128x *LoRa = &sx128x_modem;
#endif
#include "ROM.h" #include "ROM.h"
#include "Framing.h" #include "Framing.h"
#include "MD5.h" #include "MD5.h"
@ -657,11 +668,7 @@ void kiss_indicate_stat_tx() {
} }
void kiss_indicate_stat_rssi() { void kiss_indicate_stat_rssi() {
#if MODEM == SX1276 || MODEM == SX1278 uint8_t packet_rssi_val = (uint8_t)(last_rssi+rssi_offset);
uint8_t packet_rssi_val = (uint8_t)(last_rssi+rssi_offset);
#elif MODEM == SX1262
int8_t packet_rssi_val = (int8_t)(last_rssi+rssi_offset);
#endif
serial_write(FEND); serial_write(FEND);
serial_write(CMD_STAT_RSSI); serial_write(CMD_STAT_RSSI);
escaped_serial_write(packet_rssi_val); escaped_serial_write(packet_rssi_val);
@ -975,7 +982,7 @@ inline uint8_t packetSequence(uint8_t header) {
} }
void setPreamble() { void setPreamble() {
if (radio_online) LoRa.setPreambleLength(lora_preamble_symbols); if (radio_online) LoRa->setPreambleLength(lora_preamble_symbols);
kiss_indicate_phy_stats(); kiss_indicate_phy_stats();
} }
@ -1002,12 +1009,12 @@ void updateBitrate() {
} }
void setSpreadingFactor() { void setSpreadingFactor() {
if (radio_online) LoRa.setSpreadingFactor(lora_sf); if (radio_online) LoRa->setSpreadingFactor(lora_sf);
updateBitrate(); updateBitrate();
} }
void setCodingRate() { void setCodingRate() {
if (radio_online) LoRa.setCodingRate4(lora_cr); if (radio_online) LoRa->setCodingRate4(lora_cr);
updateBitrate(); updateBitrate();
} }
@ -1021,66 +1028,66 @@ void set_implicit_length(uint8_t len) {
} }
int getTxPower() { int getTxPower() {
uint8_t txp = LoRa.getTxPower(); uint8_t txp = LoRa->getTxPower();
return (int)txp; return (int)txp;
} }
void setTXPower() { void setTXPower() {
if (radio_online) { if (radio_online) {
if (model == MODEL_A2) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A2) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_A3) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN); if (model == MODEL_A3) LoRa->setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
if (model == MODEL_A4) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN); if (model == MODEL_A4) LoRa->setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
if (model == MODEL_A7) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A7) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_A8) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A8) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_A9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A9) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_B3) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_B3) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_B4) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_B4) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_B8) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_B8) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_B9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_B9) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_C4) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_C4) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_C9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_C9) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_E4) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_E4) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_E9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_E9) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_FE) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_FE) LoRa->setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_FF) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN); if (model == MODEL_FF) LoRa->setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
} }
} }
void getBandwidth() { void getBandwidth() {
if (radio_online) { if (radio_online) {
lora_bw = LoRa.getSignalBandwidth(); lora_bw = LoRa->getSignalBandwidth();
} }
updateBitrate(); updateBitrate();
} }
void setBandwidth() { void setBandwidth() {
if (radio_online) { if (radio_online) {
LoRa.setSignalBandwidth(lora_bw); LoRa->setSignalBandwidth(lora_bw);
getBandwidth(); getBandwidth();
} }
} }
void getFrequency() { void getFrequency() {
if (radio_online) { if (radio_online) {
lora_freq = LoRa.getFrequency(); lora_freq = LoRa->getFrequency();
} }
} }
void setFrequency() { void setFrequency() {
if (radio_online) { if (radio_online) {
LoRa.setFrequency(lora_freq); LoRa->setFrequency(lora_freq);
getFrequency(); getFrequency();
} }
} }
uint8_t getRandom() { uint8_t getRandom() {
if (radio_online) { if (radio_online) {
return LoRa.random(); return LoRa->random();
} else { } else {
return 0x00; return 0x00;
} }

915
sx126x.cpp Normal file
View File

@ -0,0 +1,915 @@
// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
// Modifications and additions copyright 2023 by Mark Qvist
// Obviously still under the MIT license.
#include "sx126x.h"
#define MCU_1284P 0x91
#define MCU_2560 0x92
#define MCU_ESP32 0x81
#define MCU_NRF52 0x71
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#elif defined(NRF52840_XXAA)
#define PLATFORM PLATFORM_NRF52
#define MCU_VARIANT MCU_NRF52
#endif
#ifndef MCU_VARIANT
#error No MCU variant defined, cannot compile
#endif
#if MCU_VARIANT == MCU_ESP32
#include "soc/rtc_wdt.h"
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#define OP_RF_FREQ_6X 0x86
#define OP_SLEEP_6X 0x84
#define OP_STANDBY_6X 0x80
#define OP_TX_6X 0x83
#define OP_RX_6X 0x82
#define OP_PA_CONFIG_6X 0x95
#define OP_SET_IRQ_FLAGS_6X 0x08 // also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_6X 0x02
#define OP_GET_IRQ_STATUS_6X 0x12
#define OP_RX_BUFFER_STATUS_6X 0x13
#define OP_PACKET_STATUS_6X 0x14 // get snr & rssi of last packet
#define OP_CURRENT_RSSI_6X 0x15
#define OP_MODULATION_PARAMS_6X 0x8B // bw, sf, cr, etc.
#define OP_PACKET_PARAMS_6X 0x8C // crc, preamble, payload length, etc.
#define OP_STATUS_6X 0xC0
#define OP_TX_PARAMS_6X 0x8E // set dbm, etc
#define OP_PACKET_TYPE_6X 0x8A
#define OP_BUFFER_BASE_ADDR_6X 0x8F
#define OP_READ_REGISTER_6X 0x1D
#define OP_WRITE_REGISTER_6X 0x0D
#define OP_DIO3_TCXO_CTRL_6X 0x97
#define OP_DIO2_RF_CTRL_6X 0x9D
#define OP_CALIBRATE_6X 0x89
#define IRQ_TX_DONE_MASK_6X 0x01
#define IRQ_RX_DONE_MASK_6X 0x02
#define IRQ_HEADER_DET_MASK_6X 0x10
#define IRQ_PAYLOAD_CRC_ERROR_MASK_6X 0x40
#define MODE_LONG_RANGE_MODE_6X 0x01
#define OP_FIFO_WRITE_6X 0x0E
#define OP_FIFO_READ_6X 0x1E
#define REG_OCP_6X 0x08E7
#define REG_LNA_6X 0x08AC // no agc in sx1262
#define REG_SYNC_WORD_MSB_6X 0x0740
#define REG_SYNC_WORD_LSB_6X 0x0741
#define REG_PAYLOAD_LENGTH_6X 0x0702 // https://github.com/beegee-tokyo/SX126x-Arduino/blob/master/src/radio/sx126x/sx126x.h#L98
#define REG_RANDOM_GEN_6X 0x0819
#define MODE_TCXO_3_3V_6X 0x07
#define IRQ_PREAMBLE_DET_MASK_6X 0x04
#define XTAL_FREQ_6X (double)32000000
#define FREQ_DIV_6X (double)pow(2.0, 25.0)
#define FREQ_STEP_6X (double)(XTAL_FREQ_6X / FREQ_DIV_6X)
extern SPIClass spiModem;
#define SPI spiModem
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx126x::sx126x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _busy(LORA_DEFAULT_BUSY_PIN), _rxen(LORA_DEFAULT_RXEN_PIN),
_frequency(0),
_txp(0),
_sf(0x07),
_bw(0x04),
_cr(0x01),
_ldro(0x00),
_packetIndex(0),
_preambleLength(18),
_implicitHeaderMode(0),
_payloadLength(255),
_crcMode(1),
_fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0),
_packet({0}),
_preinit_done(false),
_onReceive(NULL)
{
// overide Stream timeout value
setTimeout(0);
}
bool sx126x::preInit() {
// setup pins
pinMode(_ss, OUTPUT);
// set SS high
digitalWrite(_ss, HIGH);
SPI.begin();
// check version (retry for up to 2 seconds)
long start = millis();
uint8_t syncmsb;
uint8_t synclsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
syncmsb = readRegister(REG_SYNC_WORD_MSB_6X);
synclsb = readRegister(REG_SYNC_WORD_LSB_6X);
if ( uint16_t(syncmsb << 8 | synclsb) == 0x1424 || uint16_t(syncmsb << 8 | synclsb) == 0x4434) {
break;
}
delay(100);
}
if ( uint16_t(syncmsb << 8 | synclsb) != 0x1424 && uint16_t(syncmsb << 8 | synclsb) != 0x4434) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx126x::readRegister(uint16_t address)
{
return singleTransfer(OP_READ_REGISTER_6X, address, 0x00);
}
void sx126x::writeRegister(uint16_t address, uint8_t value)
{
singleTransfer(OP_WRITE_REGISTER_6X, address, value);
}
uint8_t ISR_VECT sx126x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value)
{
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_6X) {
SPI.transfer(0x00);
}
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx126x::rxAntEnable()
{
uint8_t byte = 0x01;
// enable dio2 rf switch
executeOpcode(OP_DIO2_RF_CTRL_6X, &byte, 1);
digitalWrite(_rxen, HIGH);
}
void sx126x::loraMode() {
// enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_6X;
executeOpcode(OP_PACKET_TYPE_6X, &mode, 1);
}
void sx126x::waitOnBusy() {
unsigned long time = millis();
if (_busy != -1) {
while (digitalRead(_busy) == HIGH)
{
if (millis() >= (time + 100)) {
break;
}
// do nothing
}
}
}
void sx126x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::writeBuffer(const uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_6X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
_fifo_tx_addr_ptr++;
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::readBuffer(uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_6X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[8];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
// low data rate toggle
buf[3] = ldro;
// unused params in LoRa mode
buf[4] = 0x00;
buf[5] = 0x00;
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_MODULATION_PARAMS_6X, buf, 8);
}
void sx126x::setPacketParams(long preamble, uint8_t headermode, uint8_t length, uint8_t crc) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[9];
buf[0] = uint8_t((preamble & 0xFF00) >> 8);
buf[1] = uint8_t((preamble & 0x00FF));
buf[2] = headermode;
buf[3] = length;
buf[4] = crc;
// standard IQ setting (no inversion)
buf[5] = 0x00;
// unused params
buf[6] = 0x00;
buf[7] = 0x00;
buf[8] = 0x00;
executeOpcode(OP_PACKET_PARAMS_6X, buf, 9);
}
int sx126x::begin(long frequency)
{
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
if (_busy != -1) {
pinMode(_busy, INPUT);
}
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
//#if HAS_TCXO
// turn TCXO on
enableTCXO();
//#endif
loraMode();
idle();
// cannot access registers in sleep mode on sx1262, set to idle instead
if (_rxen != -1) {
pinMode(_rxen, OUTPUT);
rxAntEnable();
}
// calibrate RC64k, RC13M, PLL, ADC and image
uint8_t calibrate = 0x7F;
executeOpcode(OP_CALIBRATE_6X, &calibrate, 1);
setFrequency(frequency);
// set output power to 2 dBm
setTxPower(2);
// set LNA boost
writeRegister(REG_LNA_6X, 0x96);
// set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_6X, basebuf, 2);
setModulationParams(_sf, _bw, _cr, _ldro);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
void sx126x::end()
{
// put in sleep mode
sleep();
// stop SPI
SPI.end();
_preinit_done = false;
}
int sx126x::beginPacket(int implicitHeader)
{
// put in standby mode
idle();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx126x::endPacket()
{
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
// put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_6X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
// wait for TX done
while ((buf[1] & IRQ_TX_DONE_MASK_6X) == 0) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
yield();
}
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_6X;
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, mask, 2);
return 1;
}
uint8_t sx126x::modemStatus() {
// imitate the register status from the sx1276 / 78
uint8_t buf[2] = {0};
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
uint8_t clearbuf[2] = {0};
uint8_t byte = 0x00;
if (buf[1] & IRQ_PREAMBLE_DET_MASK_6X != 0) {
byte = byte | 0x01 | 0x04;
// clear register after reading
clearbuf[1] = IRQ_PREAMBLE_DET_MASK_6X;
}
if (buf[1] & IRQ_HEADER_DET_MASK_6X != 0) {
byte = byte | 0x02 | 0x04;
// clear register after reading
clearbuf[1] = clearbuf[1] | IRQ_HEADER_DET_MASK_6X;
}
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, clearbuf, 2);
return byte;
}
uint8_t sx126x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
return byte;
}
int ISR_VECT sx126x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
int rssi = -(int(byte)) / 2;
return rssi - RSSI_OFFSET;
}
uint8_t sx126x::packetRssiRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[2];
}
int ISR_VECT sx126x::packetRssi() {
// may need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi - RSSI_OFFSET;
}
uint8_t ISR_VECT sx126x::packetSnrRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[1];
}
float ISR_VECT sx126x::packetSnr() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx126x::packetFrequencyError()
{
// todo: implement this, no idea how to check it on the sx1262
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx126x::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t sx126x::write(const uint8_t *buffer, size_t size)
{
if ((_payloadLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - _payloadLength;
}
// write data
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx126x::available()
{
uint8_t buf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, buf, 2);
return buf[0] - _packetIndex;
}
int ISR_VECT sx126x::read()
{
if (!available()) {
return -1;
}
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx126x::peek()
{
if (!available()) {
return -1;
}
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx126x::flush()
{
}
void sx126x::onReceive(void(*callback)(int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
// set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_6X;
// set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_6X, buf, 8);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx126x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx126x::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
// tell radio payload length
_payloadLength = size;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
if (_rxen != -1) {
rxAntEnable();
}
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode
executeOpcode(OP_RX_6X, mode, 3);
}
void sx126x::idle()
{
//#if HAS_TCXO
// STDBY_XOSC
uint8_t byte = 0x01;
//#else
// // STDBY_RC
// uint8_t byte = 0x00;
//#endif
executeOpcode(OP_STANDBY_6X, &byte, 1);
}
void sx126x::sleep()
{
uint8_t byte = 0x00;
executeOpcode(OP_SLEEP_6X, &byte, 1);
}
void sx126x::enableTCXO() {
// only tested for RAK4630, voltage may be different on other platforms
uint8_t buf[4] = {MODE_TCXO_3_3V_6X, 0x00, 0x00, 0xFF};
executeOpcode(OP_DIO3_TCXO_CTRL_6X, buf, 4);
}
void sx126x::disableTCXO() {
// currently cannot disable on SX1262?
}
void sx126x::setTxPower(int level, int outputPin) {
// currently no low power mode for SX1262 implemented, assuming PA boost
// WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2
// RegTxClampConfig = @address 0x08D8
writeRegister(0x08D8, readRegister(0x08D8) | (0x0F << 1));
uint8_t pa_buf[4];
pa_buf[0] = 0x04;
pa_buf[1] = 0x07;
pa_buf[2] = 0x00;
pa_buf[3] = 0x01;
executeOpcode(OP_PA_CONFIG_6X, pa_buf, 4); // set pa_config for high power
if (level > 22) {
level = 22;
}
else if (level < -9) {
level = -9;
}
writeRegister(REG_OCP_6X, 0x38); // 160mA limit, overcurrent protection
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0x02; // ramping time - 40 microseconds
executeOpcode(OP_TX_PARAMS_6X, tx_buf, 2);
_txp = level;
}
uint8_t sx126x::getTxPower() {
return _txp;
}
void sx126x::setFrequency(long frequency) {
_frequency = frequency;
uint8_t buf[4];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_6X);
buf[0] = ((freq >> 24) & 0xFF);
buf[1] = ((freq >> 16) & 0xFF);
buf[2] = ((freq >> 8) & 0xFF);
buf[3] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_6X, buf, 4);
}
uint32_t sx126x::getFrequency() {
// we can't read the frequency on the sx1262 / 80
uint32_t frequency = _frequency;
return frequency;
}
void sx126x::setSpreadingFactor(int sf)
{
if (sf < 5) {
sf = 5;
} else if (sf > 12) {
sf = 12;
}
_sf = sf;
setModulationParams(sf, _bw, _cr, _ldro);
handleLowDataRate();
}
long sx126x::getSignalBandwidth()
{
int bw = _bw;
switch (bw) {
case 0x00: return 7.8E3;
case 0x01: return 15.6E3;
case 0x02: return 31.25E3;
case 0x03: return 62.5E3;
case 0x04: return 125E3;
case 0x05: return 250E3;
case 0x06: return 500E3;
case 0x08: return 10.4E3;
case 0x09: return 20.8E3;
case 0x0A: return 41.7E3;
}
return 0;
}
void sx126x::handleLowDataRate(){
_ldro = 1;
setModulationParams(_sf, _bw, _cr, _ldro);
}
void sx126x::optimizeModemSensitivity(){
// todo: check if there's anything the sx1262 can do here
}
void sx126x::setSignalBandwidth(long sbw)
{
if (sbw <= 7.8E3) {
_bw = 0x00;
} else if (sbw <= 10.4E3) {
_bw = 0x08;
} else if (sbw <= 15.6E3) {
_bw = 0x01;
} else if (sbw <= 20.8E3) {
_bw = 0x09;
} else if (sbw <= 31.25E3) {
_bw = 0x02;
} else if (sbw <= 41.7E3) {
_bw = 0x0A;
} else if (sbw <= 62.5E3) {
_bw = 0x03;
} else if (sbw <= 125E3) {
_bw = 0x04;
} else if (sbw <= 250E3) {
_bw = 0x05;
} else /*if (sbw <= 250E3)*/ {
_bw = 0x06;
}
setModulationParams(_sf, _bw, _cr, _ldro);
handleLowDataRate();
optimizeModemSensitivity();
}
void sx126x::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
int cr = denominator - 4;
_cr = cr;
setModulationParams(_sf, _bw, cr, _ldro);
}
void sx126x::setPreambleLength(long length)
{
setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::setSyncWord(int sw)
{
writeRegister(REG_SYNC_WORD_MSB_6X, sw & 0xFF00);
writeRegister(REG_SYNC_WORD_LSB_6X, sw & 0x00FF);
}
void sx126x::enableCrc()
{
_crcMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::disableCrc()
{
_crcMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
byte sx126x::random()
{
return readRegister(REG_RANDOM_GEN_6X);
}
void sx126x::setPins(int ss, int reset, int dio0, int busy, int rxen)
{
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
}
void sx126x::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void sx126x::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void sx126x::explicitHeaderMode()
{
_implicitHeaderMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::implicitHeaderMode()
{
_implicitHeaderMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void ISR_VECT sx126x::handleDio0Rise()
{
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_6X) == 0) {
// received a packet
_packetIndex = 0;
// read packet length
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int packetLength = rxbuf[0];
if (_onReceive) {
_onReceive(packetLength);
}
}
}
void ISR_VECT sx126x::onDio0Rise()
{
sx126x_modem.handleDio0Rise();
}
sx126x sx126x_modem;

View File

@ -4,8 +4,8 @@
// Modifications and additions copyright 2023 by Mark Qvist // Modifications and additions copyright 2023 by Mark Qvist
// Obviously still under the MIT license. // Obviously still under the MIT license.
#ifndef LORA_H #ifndef SX126X_H
#define LORA_H #define SX126X_H
#include <Arduino.h> #include <Arduino.h>
#include <SPI.h> #include <SPI.h>
@ -15,6 +15,7 @@
#define LORA_DEFAULT_RESET_PIN 9 #define LORA_DEFAULT_RESET_PIN 9
#define LORA_DEFAULT_DIO0_PIN 2 #define LORA_DEFAULT_DIO0_PIN 2
#define LORA_DEFAULT_RXEN_PIN -1 #define LORA_DEFAULT_RXEN_PIN -1
#define LORA_DEFAULT_TXEN_PIN -1
#define LORA_DEFAULT_BUSY_PIN -1 #define LORA_DEFAULT_BUSY_PIN -1
#define PA_OUTPUT_RFO_PIN 0 #define PA_OUTPUT_RFO_PIN 0
@ -22,9 +23,9 @@
#define RSSI_OFFSET 157 #define RSSI_OFFSET 157
class LoRaClass : public Stream { class sx126x : public Stream {
public: public:
LoRaClass(); sx126x();
int begin(long frequency); int begin(long frequency);
void end(); void end();
@ -74,18 +75,16 @@ public:
void enableTCXO(); void enableTCXO();
void disableTCXO(); void disableTCXO();
#if MODEM == SX1262 void rxAntEnable();
void enableAntenna(); void loraMode();
void disableAntenna(); void waitOnBusy();
void loraMode(); void executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size);
void waitOnBusy(); void executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size);
void executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size); void writeBuffer(const uint8_t* buffer, size_t size);
void executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size); void readBuffer(uint8_t* buffer, size_t size);
void writeBuffer(const uint8_t* buffer, size_t size); void setPacketParams(long preamble, uint8_t headermode, uint8_t length, uint8_t crc);
void readBuffer(uint8_t* buffer, size_t size);
void setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro); void setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro);
void setPacketParams(long preamble, uint8_t headermode, uint8_t length, uint8_t crc);
#endif
// deprecated // deprecated
void crc() { enableCrc(); } void crc() { enableCrc(); }
@ -93,7 +92,7 @@ public:
byte random(); byte random();
void setPins(int ss = LORA_DEFAULT_SS_PIN, int reset = LORA_DEFAULT_RESET_PIN, int dio0 = LORA_DEFAULT_DIO0_PIN, int rxen = LORA_DEFAULT_RXEN_PIN, int busy = LORA_DEFAULT_BUSY_PIN); void setPins(int ss = LORA_DEFAULT_SS_PIN, int reset = LORA_DEFAULT_RESET_PIN, int dio0 = LORA_DEFAULT_DIO0_PIN, int busy = LORA_DEFAULT_BUSY_PIN, int rxen = LORA_DEFAULT_RXEN_PIN);
void setSPIFrequency(uint32_t frequency); void setSPIFrequency(uint32_t frequency);
void dumpRegisters(Stream& out); void dumpRegisters(Stream& out);
@ -104,15 +103,9 @@ private:
void handleDio0Rise(); void handleDio0Rise();
#if MODEM == SX1276 || MODEM == SX1278 uint8_t readRegister(uint16_t address);
uint8_t readRegister(uint8_t address); void writeRegister(uint16_t address, uint8_t value);
void writeRegister(uint8_t address, uint8_t value); uint8_t singleTransfer(uint8_t opcode, uint16_t address, uint8_t value);
uint8_t singleTransfer(uint8_t address, uint8_t value);
#elif MODEM == SX1262
uint8_t readRegister(uint16_t address);
void writeRegister(uint16_t address, uint8_t value);
uint8_t singleTransfer(uint8_t opcode, uint16_t address, uint8_t value);
#endif
static void onDio0Rise(); static void onDio0Rise();
@ -137,9 +130,13 @@ private:
int _implicitHeaderMode; int _implicitHeaderMode;
int _payloadLength; int _payloadLength;
int _crcMode; int _crcMode;
int _fifo_tx_addr_ptr;
int _fifo_rx_addr_ptr;
uint8_t _packet[255];
bool _preinit_done;
void (*_onReceive)(int); void (*_onReceive)(int);
}; };
extern LoRaClass LoRa; extern sx126x sx126x_modem;
#endif #endif

691
sx127x.cpp Normal file
View File

@ -0,0 +1,691 @@
// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
// Modifications and additions copyright 2023 by Mark Qvist
// Obviously still under the MIT license.
#include "sx127x.h"
#define MCU_1284P 0x91
#define MCU_2560 0x92
#define MCU_ESP32 0x81
#define MCU_NRF52 0x71
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#elif defined(NRF52840_XXAA)
#define PLATFORM PLATFORM_NRF52
#define MCU_VARIANT MCU_NRF52
#endif
#ifndef MCU_VARIANT
#error No MCU variant defined, cannot compile
#endif
#if MCU_VARIANT == MCU_ESP32
#include "soc/rtc_wdt.h"
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
// Registers
#define REG_FIFO_7X 0x00
#define REG_OP_MODE_7X 0x01
#define REG_FRF_MSB_7X 0x06
#define REG_FRF_MID_7X 0x07
#define REG_FRF_LSB_7X 0x08
#define REG_PA_CONFIG_7X 0x09
#define REG_OCP_7X 0x0b
#define REG_LNA_7X 0x0c
#define REG_FIFO_ADDR_PTR_7X 0x0d
#define REG_FIFO_TX_BASE_ADDR_7X 0x0e
#define REG_FIFO_RX_BASE_ADDR_7X 0x0f
#define REG_FIFO_RX_CURRENT_ADDR_7X 0x10
#define REG_IRQ_FLAGS_7X 0x12
#define REG_RX_NB_BYTES_7X 0x13
#define REG_MODEM_STAT_7X 0x18
#define REG_PKT_SNR_VALUE_7X 0x19
#define REG_PKT_RSSI_VALUE_7X 0x1a
#define REG_RSSI_VALUE_7X 0x1b
#define REG_MODEM_CONFIG_1_7X 0x1d
#define REG_MODEM_CONFIG_2_7X 0x1e
#define REG_PREAMBLE_MSB_7X 0x20
#define REG_PREAMBLE_LSB_7X 0x21
#define REG_PAYLOAD_LENGTH_7X 0x22
#define REG_MODEM_CONFIG_3_7X 0x26
#define REG_FREQ_ERROR_MSB_7X 0x28
#define REG_FREQ_ERROR_MID_7X 0x29
#define REG_FREQ_ERROR_LSB_7X 0x2a
#define REG_RSSI_WIDEBAND_7X 0x2c
#define REG_DETECTION_OPTIMIZE_7X 0x31
#define REG_HIGH_BW_OPTIMIZE_1_7X 0x36
#define REG_DETECTION_THRESHOLD_7X 0x37
#define REG_SYNC_WORD_7X 0x39
#define REG_HIGH_BW_OPTIMIZE_2_7X 0x3a
#define REG_DIO_MAPPING_1_7X 0x40
#define REG_VERSION_7X 0x42
#define REG_TCXO_7X 0x4b
#define REG_PA_DAC_7X 0x4d
// Modes
#define MODE_LONG_RANGE_MODE_7X 0x80
#define MODE_SLEEP_7X 0x00
#define MODE_STDBY_7X 0x01
#define MODE_TX_7X 0x03
#define MODE_RX_CONTINUOUS_7X 0x05
#define MODE_RX_SINGLE_7X 0x06
// PA config
#define PA_BOOST_7X 0x80
// IRQ masks
#define IRQ_TX_DONE_MASK_7X 0x08
#define IRQ_PAYLOAD_CRC_ERROR_MASK_7X 0x20
#define IRQ_RX_DONE_MASK_7X 0x40
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx127x::sx127x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN),
_frequency(0),
_packetIndex(0),
_preinit_done(false),
_onReceive(NULL)
{
// overide Stream timeout value
setTimeout(0);
}
bool sx127x::preInit() {
// setup pins
pinMode(_ss, OUTPUT);
// set SS high
digitalWrite(_ss, HIGH);
SPI.begin();
// check version (retry for up to 2 seconds)
uint8_t version;
long start = millis();
while (((millis() - start) < 2000) && (millis() >= start)) {
version = readRegister(REG_VERSION_7X);
if (version == 0x12) {
break;
}
delay(100);
}
if (version != 0x12) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx127x::readRegister(uint8_t address)
{
return singleTransfer(address & 0x7f, 0x00);
}
void sx127x::writeRegister(uint8_t address, uint8_t value)
{
singleTransfer(address | 0x80, value);
}
uint8_t ISR_VECT sx127x::singleTransfer(uint8_t address, uint8_t value)
{
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(address);
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
int sx127x::begin(long frequency)
{
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
if (_busy != -1) {
pinMode(_busy, INPUT);
}
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
// put in sleep mode
sleep();
// set frequency
setFrequency(frequency);
// set base addresses
writeRegister(REG_FIFO_TX_BASE_ADDR_7X, 0);
writeRegister(REG_FIFO_RX_BASE_ADDR_7X, 0);
// set LNA boost
writeRegister(REG_LNA_7X, readRegister(REG_LNA_7X) | 0x03);
// set auto AGC
writeRegister(REG_MODEM_CONFIG_3_7X, 0x04);
// set output power to 2 dBm
setTxPower(2);
// put in standby mode
idle();
return 1;
}
void sx127x::end()
{
// put in sleep mode
sleep();
// stop SPI
SPI.end();
_preinit_done = false;
}
int sx127x::beginPacket(int implicitHeader)
{
// put in standby mode
idle();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
// reset FIFO address and payload length
writeRegister(REG_FIFO_ADDR_PTR_7X, 0);
writeRegister(REG_PAYLOAD_LENGTH_7X, 0);
return 1;
}
int sx127x::endPacket()
{
// put in TX mode
writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_TX_7X);
// wait for TX done
while ((readRegister(REG_IRQ_FLAGS_7X) & IRQ_TX_DONE_MASK_7X) == 0) {
yield();
}
// clear IRQ's
writeRegister(REG_IRQ_FLAGS_7X, IRQ_TX_DONE_MASK_7X);
return 1;
}
uint8_t sx127x::modemStatus() {
return readRegister(REG_MODEM_STAT_7X);
}
uint8_t sx127x::currentRssiRaw() {
uint8_t rssi = readRegister(REG_RSSI_VALUE_7X);
return rssi;
}
int ISR_VECT sx127x::currentRssi() {
int rssi = (int)readRegister(REG_RSSI_VALUE_7X) - RSSI_OFFSET;
if (_frequency < 820E6) rssi -= 7;
return rssi;
}
uint8_t sx127x::packetRssiRaw() {
uint8_t pkt_rssi_value = readRegister(REG_PKT_RSSI_VALUE_7X);
return pkt_rssi_value;
}
int ISR_VECT sx127x::packetRssi() {
int pkt_rssi = (int)readRegister(REG_PKT_RSSI_VALUE_7X) - RSSI_OFFSET;
int pkt_snr = packetSnr();
if (_frequency < 820E6) pkt_rssi -= 7;
if (pkt_snr < 0) {
pkt_rssi += pkt_snr;
} else {
// Slope correction is (16/15)*pkt_rssi,
// this estimation looses one floating point
// operation, and should be precise enough.
pkt_rssi = (int)(1.066 * pkt_rssi);
}
return pkt_rssi;
}
uint8_t ISR_VECT sx127x::packetSnrRaw() {
return readRegister(REG_PKT_SNR_VALUE_7X);
}
float ISR_VECT sx127x::packetSnr() {
return ((int8_t)readRegister(REG_PKT_SNR_VALUE_7X)) * 0.25;
}
long sx127x::packetFrequencyError()
{
int32_t freqError = 0;
freqError = static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MSB_7X) & B111);
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MID_7X));
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_LSB_7X));
if (readRegister(REG_FREQ_ERROR_MSB_7X) & B1000) { // Sign bit is on
freqError -= 524288; // B1000'0000'0000'0000'0000
}
const float fXtal = 32E6; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
const float fError = ((static_cast<float>(freqError) * (1L << 24)) / fXtal) * (getSignalBandwidth() / 500000.0f); // p. 37
return static_cast<long>(fError);
}
size_t sx127x::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t sx127x::write(const uint8_t *buffer, size_t size)
{
int currentLength = readRegister(REG_PAYLOAD_LENGTH_7X);
// check size
if ((currentLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - currentLength;
}
// write data
for (size_t i = 0; i < size; i++) {
writeRegister(REG_FIFO_7X, buffer[i]);
}
// update length
writeRegister(REG_PAYLOAD_LENGTH_7X, currentLength + size);
return size;
}
int ISR_VECT sx127x::available()
{
return (readRegister(REG_RX_NB_BYTES_7X) - _packetIndex);
}
int ISR_VECT sx127x::read()
{
if (!available()) {
return -1;
}
_packetIndex++;
return readRegister(REG_FIFO_7X);
}
int sx127x::peek()
{
if (!available()) {
return -1;
}
// store current FIFO address
int currentAddress = readRegister(REG_FIFO_ADDR_PTR_7X);
// read
uint8_t b = readRegister(REG_FIFO_7X);
// restore FIFO address
writeRegister(REG_FIFO_ADDR_PTR_7X, currentAddress);
return b;
}
void sx127x::flush()
{
}
void sx127x::onReceive(void(*callback)(int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
writeRegister(REG_DIO_MAPPING_1_7X, 0x00);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx127x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx127x::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
writeRegister(REG_PAYLOAD_LENGTH_7X, size & 0xff);
} else {
explicitHeaderMode();
}
writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_RX_CONTINUOUS_7X);
}
void sx127x::idle()
{
writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_STDBY_7X);
}
void sx127x::sleep()
{
writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_SLEEP_7X);
}
void sx127x::enableTCXO() {
uint8_t tcxo_reg = readRegister(REG_TCXO_7X);
writeRegister(REG_TCXO_7X, tcxo_reg | 0x10);
}
void sx127x::disableTCXO() {
uint8_t tcxo_reg = readRegister(REG_TCXO_7X);
writeRegister(REG_TCXO_7X, tcxo_reg & 0xEF);
}
void sx127x::setTxPower(int level, int outputPin) {
if (PA_OUTPUT_RFO_PIN == outputPin) {
// RFO
if (level < 0) {
level = 0;
} else if (level > 14) {
level = 14;
}
writeRegister(REG_PA_DAC_7X, 0x84);
writeRegister(REG_PA_CONFIG_7X, 0x70 | level);
} else {
// PA BOOST
if (level < 2) {
level = 2;
} else if (level > 17) {
level = 17;
}
writeRegister(REG_PA_DAC_7X, 0x84);
writeRegister(REG_PA_CONFIG_7X, PA_BOOST_7X | (level - 2));
}
}
uint8_t sx127x::getTxPower() {
byte txp = readRegister(REG_PA_CONFIG_7X);
return txp;
}
void sx127x::setFrequency(unsigned long frequency) {
_frequency = frequency;
uint32_t frf = ((uint64_t)frequency << 19) / 32000000;
writeRegister(REG_FRF_MSB_7X, (uint8_t)(frf >> 16));
writeRegister(REG_FRF_MID_7X, (uint8_t)(frf >> 8));
writeRegister(REG_FRF_LSB_7X, (uint8_t)(frf >> 0));
optimizeModemSensitivity();
}
uint32_t sx127x::getFrequency() {
uint8_t msb = readRegister(REG_FRF_MSB_7X);
uint8_t mid = readRegister(REG_FRF_MID_7X);
uint8_t lsb = readRegister(REG_FRF_LSB_7X);
uint32_t frf = ((uint32_t)msb << 16) | ((uint32_t)mid << 8) | (uint32_t)lsb;
uint64_t frm = (uint64_t)frf*32000000;
uint32_t frequency = (frm >> 19);
return frequency;
}
void sx127x::setSpreadingFactor(int sf)
{
if (sf < 6) {
sf = 6;
} else if (sf > 12) {
sf = 12;
}
if (sf == 6) {
writeRegister(REG_DETECTION_OPTIMIZE_7X, 0xc5);
writeRegister(REG_DETECTION_THRESHOLD_7X, 0x0c);
} else {
writeRegister(REG_DETECTION_OPTIMIZE_7X, 0xc3);
writeRegister(REG_DETECTION_THRESHOLD_7X, 0x0a);
}
writeRegister(REG_MODEM_CONFIG_2_7X, (readRegister(REG_MODEM_CONFIG_2_7X) & 0x0f) | ((sf << 4) & 0xf0));
handleLowDataRate();
}
long sx127x::getSignalBandwidth()
{
byte bw = (readRegister(REG_MODEM_CONFIG_1_7X) >> 4);
switch (bw) {
case 0: return 7.8E3;
case 1: return 10.4E3;
case 2: return 15.6E3;
case 3: return 20.8E3;
case 4: return 31.25E3;
case 5: return 41.7E3;
case 6: return 62.5E3;
case 7: return 125E3;
case 8: return 250E3;
case 9: return 500E3;
}
return 0;
}
void sx127x::handleLowDataRate(){
int sf = (readRegister(REG_MODEM_CONFIG_2_7X) >> 4);
if ( long( (1<<sf) / (getSignalBandwidth()/1000)) > 16) {
// set auto AGC and LowDataRateOptimize
writeRegister(REG_MODEM_CONFIG_3_7X, (1<<3)|(1<<2));
} else {
// set auto AGC
writeRegister(REG_MODEM_CONFIG_3_7X, (1<<2));
}
}
void sx127x::optimizeModemSensitivity(){
byte bw = (readRegister(REG_MODEM_CONFIG_1_7X) >> 4);
uint32_t freq = getFrequency();
if (bw == 9 && (410E6 <= freq) && (freq <= 525E6)) {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x02);
writeRegister(REG_HIGH_BW_OPTIMIZE_2_7X, 0x7f);
} else if (bw == 9 && (820E6 <= freq) && (freq <= 1020E6)) {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x02);
writeRegister(REG_HIGH_BW_OPTIMIZE_2_7X, 0x64);
} else {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x03);
}
}
void sx127x::setSignalBandwidth(long sbw)
{
int bw;
if (sbw <= 7.8E3) {
bw = 0;
} else if (sbw <= 10.4E3) {
bw = 1;
} else if (sbw <= 15.6E3) {
bw = 2;
} else if (sbw <= 20.8E3) {
bw = 3;
} else if (sbw <= 31.25E3) {
bw = 4;
} else if (sbw <= 41.7E3) {
bw = 5;
} else if (sbw <= 62.5E3) {
bw = 6;
} else if (sbw <= 125E3) {
bw = 7;
} else if (sbw <= 250E3) {
bw = 8;
} else /*if (sbw <= 250E3)*/ {
bw = 9;
}
writeRegister(REG_MODEM_CONFIG_1_7X, (readRegister(REG_MODEM_CONFIG_1_7X) & 0x0f) | (bw << 4));
handleLowDataRate();
optimizeModemSensitivity();
}
void sx127x::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
int cr = denominator - 4;
writeRegister(REG_MODEM_CONFIG_1_7X, (readRegister(REG_MODEM_CONFIG_1_7X) & 0xf1) | (cr << 1));
}
void sx127x::setPreambleLength(long length)
{
writeRegister(REG_PREAMBLE_MSB_7X, (uint8_t)(length >> 8));
writeRegister(REG_PREAMBLE_LSB_7X, (uint8_t)(length >> 0));
}
void sx127x::setSyncWord(int sw)
{
writeRegister(REG_SYNC_WORD_7X, sw);
}
void sx127x::enableCrc()
{
writeRegister(REG_MODEM_CONFIG_2_7X, readRegister(REG_MODEM_CONFIG_2_7X) | 0x04);
}
void sx127x::disableCrc()
{
writeRegister(REG_MODEM_CONFIG_2_7X, readRegister(REG_MODEM_CONFIG_2_7X) & 0xfb);
}
byte sx127x::random()
{
return readRegister(REG_RSSI_WIDEBAND_7X);
}
void sx127x::setPins(int ss, int reset, int dio0, int busy)
{
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
}
void sx127x::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void sx127x::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void sx127x::explicitHeaderMode()
{
_implicitHeaderMode = 0;
writeRegister(REG_MODEM_CONFIG_1_7X, readRegister(REG_MODEM_CONFIG_1_7X) & 0xfe);
}
void sx127x::implicitHeaderMode()
{
_implicitHeaderMode = 1;
writeRegister(REG_MODEM_CONFIG_1_7X, readRegister(REG_MODEM_CONFIG_1_7X) | 0x01);
}
void ISR_VECT sx127x::handleDio0Rise()
{
int irqFlags = readRegister(REG_IRQ_FLAGS_7X);
// clear IRQ's
writeRegister(REG_IRQ_FLAGS_7X, irqFlags);
if ((irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK_7X) == 0) {
// received a packet
_packetIndex = 0;
// read packet length
int packetLength = _implicitHeaderMode ? readRegister(REG_PAYLOAD_LENGTH_7X) : readRegister(REG_RX_NB_BYTES_7X);
// set FIFO address to current RX address
writeRegister(REG_FIFO_ADDR_PTR_7X, readRegister(REG_FIFO_RX_CURRENT_ADDR_7X));
if (_onReceive) {
_onReceive(packetLength);
}
// reset FIFO address
writeRegister(REG_FIFO_ADDR_PTR_7X, 0);
}
}
void ISR_VECT sx127x::onDio0Rise()
{
sx127x_modem.handleDio0Rise();
}
sx127x sx127x_modem;

117
sx127x.h Normal file
View File

@ -0,0 +1,117 @@
// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
// Modifications and additions copyright 2023 by Mark Qvist
// Obviously still under the MIT license.
#ifndef SX1276_H
#define SX1276_H
#include <Arduino.h>
#include <SPI.h>
#include "Modem.h"
#define LORA_DEFAULT_SS_PIN 10
#define LORA_DEFAULT_RESET_PIN 9
#define LORA_DEFAULT_DIO0_PIN 2
#define LORA_DEFAULT_BUSY_PIN -1
#define PA_OUTPUT_RFO_PIN 0
#define PA_OUTPUT_PA_BOOST_PIN 1
#define RSSI_OFFSET 157
class sx127x : public Stream {
public:
sx127x();
int begin(long frequency);
void end();
int beginPacket(int implicitHeader = false);
int endPacket();
int parsePacket(int size = 0);
int packetRssi();
int currentRssi();
uint8_t packetRssiRaw();
uint8_t currentRssiRaw();
uint8_t packetSnrRaw();
float packetSnr();
long packetFrequencyError();
// from Print
virtual size_t write(uint8_t byte);
virtual size_t write(const uint8_t *buffer, size_t size);
// from Stream
virtual int available();
virtual int read();
virtual int peek();
virtual void flush();
void onReceive(void(*callback)(int));
void receive(int size = 0);
void idle();
void sleep();
bool preInit();
uint8_t getTxPower();
void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN);
uint32_t getFrequency();
void setFrequency(unsigned long frequency);
void setSpreadingFactor(int sf);
long getSignalBandwidth();
void setSignalBandwidth(long sbw);
void setCodingRate4(int denominator);
void setPreambleLength(long length);
void setSyncWord(int sw);
uint8_t modemStatus();
void enableCrc();
void disableCrc();
void enableTCXO();
void disableTCXO();
// deprecated
void crc() { enableCrc(); }
void noCrc() { disableCrc(); }
byte random();
void setPins(int ss = LORA_DEFAULT_SS_PIN, int reset = LORA_DEFAULT_RESET_PIN, int dio0 = LORA_DEFAULT_DIO0_PIN, int busy = LORA_DEFAULT_BUSY_PIN);
void setSPIFrequency(uint32_t frequency);
void dumpRegisters(Stream& out);
private:
void explicitHeaderMode();
void implicitHeaderMode();
void handleDio0Rise();
uint8_t readRegister(uint8_t address);
void writeRegister(uint8_t address, uint8_t value);
uint8_t singleTransfer(uint8_t address, uint8_t value);
static void onDio0Rise();
void handleLowDataRate();
void optimizeModemSensitivity();
private:
SPISettings _spiSettings;
int _ss;
int _reset;
int _dio0;
int _busy;
long _frequency;
int _packetIndex;
int _implicitHeaderMode;
bool _preinit_done;
void (*_onReceive)(int);
};
extern sx127x sx127x_modem;
#endif

876
sx128x.cpp Normal file
View File

@ -0,0 +1,876 @@
// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
// Modifications and additions copyright 2023 by Mark Qvist
// Obviously still under the MIT license.
#include "sx128x.h"
#define MCU_1284P 0x91
#define MCU_2560 0x92
#define MCU_ESP32 0x81
#define MCU_NRF52 0x71
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#elif defined(NRF52840_XXAA)
#define PLATFORM PLATFORM_NRF52
#define MCU_VARIANT MCU_NRF52
#endif
#ifndef MCU_VARIANT
#error No MCU variant defined, cannot compile
#endif
#if MCU_VARIANT == MCU_ESP32
#include "soc/rtc_wdt.h"
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#define OP_RF_FREQ_8X 0x86
#define OP_SLEEP_8X 0x84
#define OP_STANDBY_8X 0x80
#define OP_TX_8X 0x83
#define OP_RX_8X 0x82
#define OP_SET_IRQ_FLAGS_8X 0x8D // also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_8X 0x97
#define OP_GET_IRQ_STATUS_8X 0x15
#define OP_RX_BUFFER_STATUS_8X 0x17
#define OP_PACKET_STATUS_8X 0x1D // get snr & rssi of last packet
#define OP_CURRENT_RSSI_8X 0x1F
#define OP_MODULATION_PARAMS_8X 0x8B // bw, sf, cr, etc.
#define OP_PACKET_PARAMS_8X 0x8C // crc, preamble, payload length, etc.
#define OP_STATUS_8X 0xC0
#define OP_TX_PARAMS_8X 0x8E // set dbm, etc
#define OP_PACKET_TYPE_8X 0x8A
#define OP_BUFFER_BASE_ADDR_8X 0x8F
#define OP_READ_REGISTER_8X 0x19
#define OP_WRITE_REGISTER_8X 0x18
#define IRQ_TX_DONE_MASK_8X 0x01
#define IRQ_RX_DONE_MASK_8X 0x02
#define IRQ_HEADER_DET_MASK_8X 0x10
#define IRQ_HEADER_ERROR_MASK_8X 0x20
#define IRQ_PAYLOAD_CRC_ERROR_MASK_8X 0x40
#define MODE_LONG_RANGE_MODE_8X 0x01
#define OP_FIFO_WRITE_8X 0x1A
#define OP_FIFO_READ_8X 0x1B
#define IRQ_PREAMBLE_DET_MASK_8X 0x80
#define REG_PACKET_SIZE 0x901
#define REG_FIRM_VER_MSB 0x154
#define REG_FIRM_VER_LSB 0x153
#define XTAL_FREQ_8X (double)52000000
#define FREQ_DIV_8X (double)pow(2.0, 18.0)
#define FREQ_STEP_8X (double)(XTAL_FREQ_8X / FREQ_DIV_8X)
extern SPIClass spiModem;
#define SPI spiModem
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx128x::sx128x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _rxen(LORA_DEFAULT_RXEN_PIN), _busy(LORA_DEFAULT_BUSY_PIN),
_frequency(0),
_txp(0),
_sf(0x50),
_bw(0x34),
_cr(0x01),
_packetIndex(0),
_preambleLength(18),
_implicitHeaderMode(0),
_payloadLength(255),
_crcMode(0),
_fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0),
_packet({0}),
_rxPacketLength(0),
_preinit_done(false),
_onReceive(NULL)
{
// overide Stream timeout value
setTimeout(0);
}
bool sx128x::preInit() {
// setup pins
pinMode(_ss, OUTPUT);
// set SS high
digitalWrite(_ss, HIGH);
SPI.begin();
// check version (retry for up to 2 seconds)
long start = millis();
uint8_t version_msb;
uint8_t version_lsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
version_msb = readRegister(REG_FIRM_VER_MSB);
version_lsb = readRegister(REG_FIRM_VER_LSB);
if ((version_msb == 0xB7 && version_lsb == 0xA9) || (version_msb == 0xB5 && version_lsb == 0xA9)) {
break;
}
delay(100);
}
if ((version_msb != 0xB7 || version_lsb != 0xA9) && (version_msb != 0xB5 || version_lsb != 0xA9)) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx128x::readRegister(uint16_t address)
{
return singleTransfer(OP_READ_REGISTER_8X, address, 0x00);
}
void sx128x::writeRegister(uint16_t address, uint8_t value)
{
singleTransfer(OP_WRITE_REGISTER_8X, address, value);
}
uint8_t ISR_VECT sx128x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value)
{
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_8X) {
SPI.transfer(0x00);
}
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx128x::rxAntEnable()
{
if (_txen != -1) {
digitalWrite(_txen, LOW);
}
if (_rxen != -1) {
digitalWrite(_rxen, HIGH);
}
}
void sx128x::txAntEnable()
{
if (_txen != -1) {
digitalWrite(_txen, HIGH);
}
if (_rxen != -1) {
digitalWrite(_rxen, LOW);
}
}
void sx128x::loraMode() {
// enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_8X;
executeOpcode(OP_PACKET_TYPE_8X, &mode, 1);
}
void sx128x::waitOnBusy() {
unsigned long time = millis();
if (_busy != -1) {
while (digitalRead(_busy) == HIGH)
{
if (millis() >= (time + 100)) {
break;
}
// do nothing
}
}
}
void sx128x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::writeBuffer(const uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_8X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
_fifo_tx_addr_ptr++;
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::readBuffer(uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_8X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr) {
// because there is no access to these registers on the sx1280, we have
// to set all these parameters at once or not at all.
uint8_t buf[3];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
executeOpcode(OP_MODULATION_PARAMS_8X, buf, 3);
if (sf <= 6) {
writeRegister(0x925, 0x1E);
} else if (sf <= 8) {
writeRegister(0x925, 0x37);
} else if (sf >= 9) {
writeRegister(0x925, 0x32);
}
writeRegister(0x093C, 0x1);
}
void sx128x::setPacketParams(uint32_t preamble, uint8_t headermode, uint8_t length, uint8_t crc) {
// because there is no access to these registers on the sx1280, we have
// to set all these parameters at once or not at all.
uint8_t buf[7];
// calculate exponent and mantissa values for modem
uint8_t e = 1;
uint8_t m = 1;
uint32_t preamblelen;
for (e <= 15; e++;) {
for (m <= 15; m++;) {
preamblelen = m * (uint32_t(1) << e);
if (preamblelen >= preamble) break;
}
if (preamblelen >= preamble) break;
}
buf[0] = (e << 4) | m;
buf[1] = headermode;
buf[2] = length;
buf[3] = crc;
// standard IQ setting (no inversion)
buf[4] = 0x40;
// unused params
buf[5] = 0x00;
buf[6] = 0x00;
executeOpcode(OP_PACKET_PARAMS_8X, buf, 7);
}
int sx128x::begin(unsigned long frequency)
{
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
if (_busy != -1) {
pinMode(_busy, INPUT);
}
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
idle();
loraMode();
rxAntEnable();
setFrequency(frequency);
// set LNA boost
// todo: implement this
//writeRegister(REG_LNA, 0x96);
setModulationParams(_sf, _bw, _cr);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
// set output power to 2 dBm
setTxPower(2);
// set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_8X, basebuf, 2);
return 1;
}
void sx128x::end()
{
// put in sleep mode
sleep();
// stop SPI
SPI.end();
_preinit_done = false;
}
int sx128x::beginPacket(int implicitHeader)
{
// put in standby mode
idle();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx128x::endPacket()
{
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
txAntEnable();
// put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_8X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
// wait for TX done
while ((buf[1] & IRQ_TX_DONE_MASK_8X) == 0) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
yield();
}
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_8X;
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, mask, 2);
return 1;
}
uint8_t sx128x::modemStatus() {
// imitate the register status from the sx1276 / 78
uint8_t buf[2] = {0};
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
uint8_t clearbuf[2] = {0};
uint8_t byte = 0x00;
if (buf[0] & IRQ_PREAMBLE_DET_MASK_8X != 0) {
byte = byte | 0x01 | 0x04;
// clear register after reading
clearbuf[0] = 0xFF;
}
if (buf[1] & IRQ_HEADER_DET_MASK_8X != 0) {
byte = byte | 0x02 | 0x04;
// clear register after reading
clearbuf[1] = 0xFF;
}
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, clearbuf, 2);
return byte;
}
uint8_t sx128x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
return byte;
}
int ISR_VECT sx128x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
int rssi = -byte / 2;
return rssi;
}
uint8_t sx128x::packetRssiRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[0];
}
int ISR_VECT sx128x::packetRssi() {
// may need more calculations here
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx128x::packetSnrRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[1];
}
float ISR_VECT sx128x::packetSnr() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx128x::packetFrequencyError()
{
int32_t freqError = 0;
// todo: implement this, page 120 of sx1280 datasheet
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx128x::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t sx128x::write(const uint8_t *buffer, size_t size)
{
if ((_payloadLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - _payloadLength;
}
// write data
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx128x::available()
{
return _rxPacketLength - _packetIndex;
}
int ISR_VECT sx128x::read()
{
if (!available()) {
return -1;
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx128x::peek()
{
if (!available()) {
return -1;
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx128x::flush()
{
}
void sx128x::onReceive(void(*callback)(int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
// set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_8X;
// set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_8X, buf, 8);
//#ifdef SPI_HAS_NOTUSINGINTERRUPT
// SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
//#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx128x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
//#ifdef SPI_HAS_NOTUSINGINTERRUPT
// SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
//#endif
}
}
void sx128x::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
// tell radio payload length
_rxPacketLength = size;
//_payloadLength = size;
//setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
rxAntEnable();
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode
executeOpcode(OP_RX_8X, mode, 3);
}
void sx128x::idle()
{
#if HAS_TCXO
// STDBY_XOSC
uint8_t byte = 0x01;
#else
// STDBY_RC
uint8_t byte = 0x00;
#endif
executeOpcode(OP_STANDBY_8X, &byte, 1);
}
void sx128x::sleep()
{
uint8_t byte = 0x00;
executeOpcode(OP_SLEEP_8X, &byte, 1);
}
void sx128x::enableTCXO() {
// todo: need to check how to implement on sx1280
}
void sx128x::disableTCXO() {
// todo: need to check how to implement on sx1280
}
void sx128x::setTxPower(int level, int outputPin) {
if (level > 13) {
level = 13;
} else if (level < -18) {
level = -18;
}
_txp = level;
level = level + 18;
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0xE0; // ramping time - 20 microseconds
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
}
uint8_t sx128x::getTxPower() {
return _txp;
}
void sx128x::setFrequency(unsigned long frequency) {
_frequency = frequency;
uint8_t buf[3];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_8X);
buf[0] = ((freq >> 16) & 0xFF);
buf[1] = ((freq >> 8) & 0xFF);
buf[2] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_8X, buf, 3);
}
uint32_t sx128x::getFrequency() {
// we can't read the frequency on the sx1280
uint32_t frequency = _frequency;
return frequency;
}
void sx128x::setSpreadingFactor(int sf)
{
if (sf < 5) {
sf = 5;
} else if (sf > 12) {
sf = 12;
}
_sf = sf << 4;
setModulationParams(sf << 4, _bw, _cr);
handleLowDataRate();
}
long sx128x::getSignalBandwidth()
{
int bw = _bw;
switch (bw) {
case 0x34: return 203.125E3;
case 0x26: return 406.25E3;
case 0x18: return 812.5E3;
case 0x0A: return 1625E3;
}
return 0;
}
void sx128x::handleLowDataRate(){
// todo: do i need this??
}
void sx128x::optimizeModemSensitivity(){
// todo: check if there's anything the sx1280 can do here
}
void sx128x::setSignalBandwidth(long sbw)
{
if (sbw <= 203.125E3) {
_bw = 0x34;
} else if (sbw <= 406.25E3) {
_bw = 0x26;
} else if (sbw <= 812.5E3) {
_bw = 0x18;
} else {
_bw = 0x0A;
}
setModulationParams(_sf, _bw, _cr);
handleLowDataRate();
optimizeModemSensitivity();
}
void sx128x::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
_cr = denominator - 4;
// todo: add support for new interleaving scheme, see page 117 of sx1280
// datasheet
// update cr values for sx1280's use
setModulationParams(_sf, _bw, _cr);
}
void sx128x::setPreambleLength(long length)
{
_preambleLength = length;
setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::setSyncWord(int sw)
{
// not implemented
}
void sx128x::enableCrc()
{
_crcMode = 0x20;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::disableCrc()
{
_crcMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
byte sx128x::random()
{
// todo: implement
}
void sx128x::setPins(int ss, int reset, int dio0, int busy, int rxen, int txen)
{
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
_txen = txen;
}
void sx128x::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void sx128x::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void sx128x::explicitHeaderMode()
{
_implicitHeaderMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::implicitHeaderMode()
{
_implicitHeaderMode = 0x80;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void ISR_VECT sx128x::handleDio0Rise()
{
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_8X) == 0) {
// received a packet
_packetIndex = 0;
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
_rxPacketLength = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, _rxPacketLength);
if (_onReceive) {
_onReceive(_rxPacketLength);
}
}
}
void ISR_VECT sx128x::onDio0Rise()
{
sx128x_modem.handleDio0Rise();
}
sx128x sx128x_modem;

144
sx128x.h Normal file
View File

@ -0,0 +1,144 @@
// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
// Modifications and additions copyright 2023 by Mark Qvist
// Obviously still under the MIT license.
#ifndef SX128X_H
#define SX128X_H
#include <Arduino.h>
#include <SPI.h>
#include "Modem.h"
#define LORA_DEFAULT_SS_PIN 10
#define LORA_DEFAULT_RESET_PIN 9
#define LORA_DEFAULT_DIO0_PIN 2
#define LORA_DEFAULT_RXEN_PIN -1
#define LORA_DEFAULT_TXEN_PIN -1
#define LORA_DEFAULT_BUSY_PIN -1
#define PA_OUTPUT_RFO_PIN 0
#define PA_OUTPUT_PA_BOOST_PIN 1
#define RSSI_OFFSET 157
class sx128x : public Stream {
public:
sx128x();
int begin(unsigned long frequency);
void end();
int beginPacket(int implicitHeader = false);
int endPacket();
int parsePacket(int size = 0);
int packetRssi();
int currentRssi();
uint8_t packetRssiRaw();
uint8_t currentRssiRaw();
uint8_t packetSnrRaw();
float packetSnr();
long packetFrequencyError();
// from Print
virtual size_t write(uint8_t byte);
virtual size_t write(const uint8_t *buffer, size_t size);
// from Stream
virtual int available();
virtual int read();
virtual int peek();
virtual void flush();
void onReceive(void(*callback)(int));
void receive(int size = 0);
void idle();
void sleep();
bool preInit();
uint8_t getTxPower();
void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN);
uint32_t getFrequency();
void setFrequency(unsigned long frequency);
void setSpreadingFactor(int sf);
long getSignalBandwidth();
void setSignalBandwidth(long sbw);
void setCodingRate4(int denominator);
void setPreambleLength(long length);
void setSyncWord(int sw);
uint8_t modemStatus();
void enableCrc();
void disableCrc();
void enableTCXO();
void disableTCXO();
void txAntEnable();
void rxAntEnable();
void loraMode();
void waitOnBusy();
void executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size);
void executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size);
void writeBuffer(const uint8_t* buffer, size_t size);
void readBuffer(uint8_t* buffer, size_t size);
void setPacketParams(uint32_t preamble, uint8_t headermode, uint8_t length, uint8_t crc);
void setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr);
// deprecated
void crc() { enableCrc(); }
void noCrc() { disableCrc(); }
byte random();
void setPins(int ss = LORA_DEFAULT_SS_PIN, int reset = LORA_DEFAULT_RESET_PIN, int dio0 = LORA_DEFAULT_DIO0_PIN, int busy = LORA_DEFAULT_BUSY_PIN, int rxen = LORA_DEFAULT_RXEN_PIN, int txen = LORA_DEFAULT_TXEN_PIN);
void setSPIFrequency(uint32_t frequency);
void dumpRegisters(Stream& out);
private:
void explicitHeaderMode();
void implicitHeaderMode();
void handleDio0Rise();
uint8_t readRegister(uint16_t address);
void writeRegister(uint16_t address, uint8_t value);
uint8_t singleTransfer(uint8_t opcode, uint16_t address, uint8_t value);
static void onDio0Rise();
void handleLowDataRate();
void optimizeModemSensitivity();
private:
SPISettings _spiSettings;
int _ss;
int _reset;
int _dio0;
int _rxen;
int _txen;
int _busy;
int _modem;
unsigned long _frequency;
int _txp;
uint8_t _sf;
uint8_t _bw;
uint8_t _cr;
int _packetIndex;
uint32_t _preambleLength;
int _implicitHeaderMode;
int _payloadLength;
int _crcMode;
int _fifo_tx_addr_ptr;
int _fifo_rx_addr_ptr;
uint8_t _packet[256];
bool _preinit_done;
int _rxPacketLength;
void (*_onReceive)(int);
};
extern sx128x sx128x_modem;
#endif