// Copyright (c) Sandeep Mistry. All rights reserved. // Licensed under the MIT license. // Modifications and additions copyright 2024 by Mark Qvist // Obviously still under the MIT license. #include "Boards.h" #if MODEM == SX1262 #include "sx126x.h" #if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3) #include "soc/rtc_wdt.h" #endif #define ISR_VECT IRAM_ATTR #else #define ISR_VECT #endif #define OP_RF_FREQ_6X 0x86 #define OP_SLEEP_6X 0x84 #define OP_STANDBY_6X 0x80 #define OP_TX_6X 0x83 #define OP_RX_6X 0x82 #define OP_PA_CONFIG_6X 0x95 #define OP_SET_IRQ_FLAGS_6X 0x08 // also provides info such as // preamble detection, etc for // knowing when it's safe to switch // antenna modes #define OP_CLEAR_IRQ_STATUS_6X 0x02 #define OP_GET_IRQ_STATUS_6X 0x12 #define OP_RX_BUFFER_STATUS_6X 0x13 #define OP_PACKET_STATUS_6X 0x14 // get snr & rssi of last packet #define OP_CURRENT_RSSI_6X 0x15 #define OP_MODULATION_PARAMS_6X 0x8B // bw, sf, cr, etc. #define OP_PACKET_PARAMS_6X 0x8C // crc, preamble, payload length, etc. #define OP_STATUS_6X 0xC0 #define OP_TX_PARAMS_6X 0x8E // set dbm, etc #define OP_PACKET_TYPE_6X 0x8A #define OP_BUFFER_BASE_ADDR_6X 0x8F #define OP_READ_REGISTER_6X 0x1D #define OP_WRITE_REGISTER_6X 0x0D #define OP_DIO3_TCXO_CTRL_6X 0x97 #define OP_DIO2_RF_CTRL_6X 0x9D #define OP_CAD_PARAMS 0x88 #define OP_CALIBRATE_6X 0x89 #define OP_RX_TX_FALLBACK_MODE_6X 0x93 #define OP_REGULATOR_MODE_6X 0x96 #define OP_CALIBRATE_IMAGE_6X 0x98 #define MASK_CALIBRATE_ALL 0x7f #define IRQ_TX_DONE_MASK_6X 0x01 #define IRQ_RX_DONE_MASK_6X 0x02 #define IRQ_HEADER_DET_MASK_6X 0x10 #define IRQ_PREAMBLE_DET_MASK_6X 0x04 #define IRQ_PAYLOAD_CRC_ERROR_MASK_6X 0x40 #define IRQ_ALL_MASK_6X 0b0100001111111111 #define MODE_LONG_RANGE_MODE_6X 0x01 #define OP_FIFO_WRITE_6X 0x0E #define OP_FIFO_READ_6X 0x1E #define REG_OCP_6X 0x08E7 #define REG_LNA_6X 0x08AC // no agc in sx1262 #define REG_SYNC_WORD_MSB_6X 0x0740 #define REG_SYNC_WORD_LSB_6X 0x0741 #define REG_PAYLOAD_LENGTH_6X 0x0702 // https://github.com/beegee-tokyo/SX126x-Arduino/blob/master/src/radio/sx126x/sx126x.h#L98 #define REG_RANDOM_GEN_6X 0x0819 #define MODE_TCXO_3_3V_6X 0x07 #define MODE_TCXO_3_0V_6X 0x06 #define MODE_TCXO_2_7V_6X 0x06 #define MODE_TCXO_2_4V_6X 0x06 #define MODE_TCXO_2_2V_6X 0x03 #define MODE_TCXO_1_8V_6X 0x02 #define MODE_TCXO_1_7V_6X 0x01 #define MODE_TCXO_1_6V_6X 0x00 #define MODE_STDBY_RC_6X 0x00 #define MODE_STDBY_XOSC_6X 0x01 #define MODE_FALLBACK_STDBY_RC_6X 0x20 #define MODE_IMPLICIT_HEADER 0x01 #define MODE_EXPLICIT_HEADER 0x00 #define SYNC_WORD_6X 0x1424 #define XTAL_FREQ_6X (double)32000000 #define FREQ_DIV_6X (double)pow(2.0, 25.0) #define FREQ_STEP_6X (double)(XTAL_FREQ_6X / FREQ_DIV_6X) #if defined(NRF52840_XXAA) extern SPIClass spiModem; #define SPI spiModem #endif extern SPIClass SPI; #define MAX_PKT_LENGTH 255 sx126x::sx126x() : _spiSettings(8E6, MSBFIRST, SPI_MODE0), _ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _busy(LORA_DEFAULT_BUSY_PIN), _rxen(LORA_DEFAULT_RXEN_PIN), _frequency(0), _txp(0), _sf(0x07), _bw(0x04), _cr(0x01), _ldro(0x00), _packetIndex(0), _preambleLength(18), _implicitHeaderMode(0), _payloadLength(255), _crcMode(1), _fifo_tx_addr_ptr(0), _fifo_rx_addr_ptr(0), _packet({0}), _preinit_done(false), _onReceive(NULL) { // overide Stream timeout value setTimeout(0); } bool sx126x::preInit() { pinMode(_ss, OUTPUT); digitalWrite(_ss, HIGH); #if BOARD_MODEL == BOARD_RNODE_NG_22 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_TDECK SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs); #else SPI.begin(); #endif // check version (retry for up to 2 seconds) // TODO: Actually read version registers, not syncwords long start = millis(); uint8_t syncmsb; uint8_t synclsb; while (((millis() - start) < 2000) && (millis() >= start)) { syncmsb = readRegister(REG_SYNC_WORD_MSB_6X); synclsb = readRegister(REG_SYNC_WORD_LSB_6X); if ( uint16_t(syncmsb << 8 | synclsb) == 0x1424 || uint16_t(syncmsb << 8 | synclsb) == 0x4434) { break; } delay(100); } if ( uint16_t(syncmsb << 8 | synclsb) != 0x1424 && uint16_t(syncmsb << 8 | synclsb) != 0x4434) { return false; } _preinit_done = true; return true; } uint8_t ISR_VECT sx126x::readRegister(uint16_t address) { return singleTransfer(OP_READ_REGISTER_6X, address, 0x00); } void sx126x::writeRegister(uint16_t address, uint8_t value) { singleTransfer(OP_WRITE_REGISTER_6X, address, value); } uint8_t ISR_VECT sx126x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value) { waitOnBusy(); uint8_t response; digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(opcode); SPI.transfer((address & 0xFF00) >> 8); SPI.transfer(address & 0x00FF); if (opcode == OP_READ_REGISTER_6X) { SPI.transfer(0x00); } response = SPI.transfer(value); SPI.endTransaction(); digitalWrite(_ss, HIGH); return response; } void sx126x::rxAntEnable() { if (_rxen != -1) { digitalWrite(_rxen, HIGH); } } void sx126x::loraMode() { // enable lora mode on the SX1262 chip uint8_t mode = MODE_LONG_RANGE_MODE_6X; executeOpcode(OP_PACKET_TYPE_6X, &mode, 1); } void sx126x::waitOnBusy() { unsigned long time = millis(); if (_busy != -1) { while (digitalRead(_busy) == HIGH) { if (millis() >= (time + 100)) { break; } // do nothing } } } void sx126x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size) { waitOnBusy(); digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(opcode); for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); } SPI.endTransaction(); digitalWrite(_ss, HIGH); } void sx126x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size) { waitOnBusy(); digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(opcode); SPI.transfer(0x00); for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); } SPI.endTransaction(); digitalWrite(_ss, HIGH); } void sx126x::writeBuffer(const uint8_t* buffer, size_t size) { waitOnBusy(); digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(OP_FIFO_WRITE_6X); SPI.transfer(_fifo_tx_addr_ptr); for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); _fifo_tx_addr_ptr++; } SPI.endTransaction(); digitalWrite(_ss, HIGH); } void sx126x::readBuffer(uint8_t* buffer, size_t size) { waitOnBusy(); digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(OP_FIFO_READ_6X); SPI.transfer(_fifo_rx_addr_ptr); SPI.transfer(0x00); for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); } SPI.endTransaction(); digitalWrite(_ss, HIGH); } void sx126x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro) { // because there is no access to these registers on the sx1262, we have // to set all these parameters at once or not at all. uint8_t buf[8]; buf[0] = sf; buf[1] = bw; buf[2] = cr; // low data rate toggle buf[3] = ldro; // unused params in LoRa mode buf[4] = 0x00; buf[5] = 0x00; buf[6] = 0x00; buf[7] = 0x00; executeOpcode(OP_MODULATION_PARAMS_6X, buf, 8); } void sx126x::setPacketParams(long preamble, uint8_t headermode, uint8_t length, uint8_t crc) { // because there is no access to these registers on the sx1262, we have // to set all these parameters at once or not at all. uint8_t buf[9]; buf[0] = uint8_t((preamble & 0xFF00) >> 8); buf[1] = uint8_t((preamble & 0x00FF)); buf[2] = headermode; buf[3] = length; buf[4] = crc; // standard IQ setting (no inversion) buf[5] = 0x00; // unused params buf[6] = 0x00; buf[7] = 0x00; buf[8] = 0x00; executeOpcode(OP_PACKET_PARAMS_6X, buf, 9); } void sx126x::reset(void) { if (_reset != -1) { pinMode(_reset, OUTPUT); // perform reset digitalWrite(_reset, LOW); delay(10); digitalWrite(_reset, HIGH); delay(10); } } void sx126x::calibrate(void) { // Put in STDBY_RC mode before calibration uint8_t mode_byte = MODE_STDBY_RC_6X; executeOpcode(OP_STANDBY_6X, &mode_byte, 1); // calibrate RC64k, RC13M, PLL, ADC and image uint8_t calibrate = MASK_CALIBRATE_ALL; executeOpcode(OP_CALIBRATE_6X, &calibrate, 1); delay(5); waitOnBusy(); } void sx126x::calibrate_image(long frequency) { uint8_t image_freq[2] = {0}; if (frequency >= 430E6 && frequency <= 440E6) { image_freq[0] = 0x6B; image_freq[1] = 0x6F; } else if (frequency >= 470E6 && frequency <= 510E6) { image_freq[0] = 0x75; image_freq[1] = 0x81; } else if (frequency >= 779E6 && frequency <= 787E6) { image_freq[0] = 0xC1; image_freq[1] = 0xC5; } else if (frequency >= 863E6 && frequency <= 870E6) { image_freq[0] = 0xD7; image_freq[1] = 0xDB; } else if (frequency >= 902E6 && frequency <= 928E6) { image_freq[0] = 0xE1; image_freq[1] = 0xE9; } executeOpcode(OP_CALIBRATE_IMAGE_6X, image_freq, 2); waitOnBusy(); } int sx126x::begin(long frequency) { reset(); if (_busy != -1) { pinMode(_busy, INPUT); } if (!_preinit_done) { if (!preInit()) { return false; } } if (_rxen != -1) { pinMode(_rxen, OUTPUT); } calibrate(); calibrate_image(frequency); enableTCXO(); loraMode(); standby(); // Set sync word setSyncWord(SYNC_WORD_6X); #if DIO2_AS_RF_SWITCH // enable dio2 rf switch uint8_t byte = 0x01; executeOpcode(OP_DIO2_RF_CTRL_6X, &byte, 1); #endif rxAntEnable(); setFrequency(frequency); // set output power to 2 dBm setTxPower(2); enableCrc(); // set LNA boost writeRegister(REG_LNA_6X, 0x96); // set base addresses uint8_t basebuf[2] = {0}; executeOpcode(OP_BUFFER_BASE_ADDR_6X, basebuf, 2); setModulationParams(_sf, _bw, _cr, _ldro); setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); return 1; } void sx126x::end() { // put in sleep mode sleep(); // stop SPI SPI.end(); _preinit_done = false; } int sx126x::beginPacket(int implicitHeader) { standby(); if (implicitHeader) { implicitHeaderMode(); } else { explicitHeaderMode(); } _payloadLength = 0; _fifo_tx_addr_ptr = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); return 1; } int sx126x::endPacket() { setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); // put in single TX mode uint8_t timeout[3] = {0}; executeOpcode(OP_TX_6X, timeout, 3); uint8_t buf[2]; buf[0] = 0x00; buf[1] = 0x00; executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2); bool timed_out = false; uint32_t w_timeout = millis()+LORA_MODEM_TIMEOUT_MS; // wait for TX done while ((millis() < w_timeout) && ((buf[1] & IRQ_TX_DONE_MASK_6X) == 0)) { buf[0] = 0x00; buf[1] = 0x00; executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2); yield(); } if (!(millis() < w_timeout)) { timed_out = true; } // clear IRQ's uint8_t mask[2]; mask[0] = 0x00; mask[1] = IRQ_TX_DONE_MASK_6X; executeOpcode(OP_CLEAR_IRQ_STATUS_6X, mask, 2); if (timed_out) { return 0; } else { return 1; } } uint8_t sx126x::modemStatus() { // imitate the register status from the sx1276 / 78 uint8_t buf[2] = {0}; executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2); uint8_t clearbuf[2] = {0}; uint8_t byte = 0x00; if ((buf[1] & IRQ_PREAMBLE_DET_MASK_6X) != 0) { byte = byte | 0x01 | 0x04; // clear register after reading clearbuf[1] = IRQ_PREAMBLE_DET_MASK_6X; } if ((buf[1] & IRQ_HEADER_DET_MASK_6X) != 0) { byte = byte | 0x02 | 0x04; } executeOpcode(OP_CLEAR_IRQ_STATUS_6X, clearbuf, 2); return byte; } uint8_t sx126x::currentRssiRaw() { uint8_t byte = 0; executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1); return byte; } int ISR_VECT sx126x::currentRssi() { uint8_t byte = 0; executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1); int rssi = -(int(byte)) / 2; return rssi; } uint8_t sx126x::packetRssiRaw() { uint8_t buf[3] = {0}; executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3); return buf[2]; } int ISR_VECT sx126x::packetRssi() { // may need more calculations here uint8_t buf[3] = {0}; executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3); int pkt_rssi = -buf[0] / 2; return pkt_rssi; } int ISR_VECT sx126x::packetRssi(uint8_t pkt_snr_raw) { // may need more calculations here uint8_t buf[3] = {0}; executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3); int pkt_rssi = -buf[0] / 2; return pkt_rssi; } uint8_t ISR_VECT sx126x::packetSnrRaw() { uint8_t buf[3] = {0}; executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3); return buf[1]; } float ISR_VECT sx126x::packetSnr() { uint8_t buf[3] = {0}; executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3); return float(buf[1]) * 0.25; } long sx126x::packetFrequencyError() { // todo: implement this, no idea how to check it on the sx1262 const float fError = 0.0; return static_cast(fError); } size_t sx126x::write(uint8_t byte) { return write(&byte, sizeof(byte)); } size_t sx126x::write(const uint8_t *buffer, size_t size) { if ((_payloadLength + size) > MAX_PKT_LENGTH) { size = MAX_PKT_LENGTH - _payloadLength; } // write data writeBuffer(buffer, size); _payloadLength = _payloadLength + size; return size; } int ISR_VECT sx126x::available() { uint8_t buf[2] = {0}; executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, buf, 2); return buf[0] - _packetIndex; } int ISR_VECT sx126x::read() { if (!available()) { return -1; } // if received new packet if (_packetIndex == 0) { uint8_t rxbuf[2] = {0}; executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2); int size = rxbuf[0]; _fifo_rx_addr_ptr = rxbuf[1]; readBuffer(_packet, size); } uint8_t byte = _packet[_packetIndex]; _packetIndex++; return byte; } int sx126x::peek() { if (!available()) { return -1; } // if received new packet if (_packetIndex == 0) { uint8_t rxbuf[2] = {0}; executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2); int size = rxbuf[0]; _fifo_rx_addr_ptr = rxbuf[1]; readBuffer(_packet, size); } uint8_t b = _packet[_packetIndex]; return b; } void sx126x::flush() { } void sx126x::onReceive(void(*callback)(int)) { _onReceive = callback; if (callback) { pinMode(_dio0, INPUT); // set preamble and header detection irqs, plus dio0 mask uint8_t buf[8]; // set irq masks, enable all buf[0] = 0xFF; buf[1] = 0xFF; // set dio0 masks buf[2] = 0x00; buf[3] = IRQ_RX_DONE_MASK_6X; // set dio1 masks buf[4] = 0x00; buf[5] = 0x00; // set dio2 masks buf[6] = 0x00; buf[7] = 0x00; executeOpcode(OP_SET_IRQ_FLAGS_6X, buf, 8); #ifdef SPI_HAS_NOTUSINGINTERRUPT SPI.usingInterrupt(digitalPinToInterrupt(_dio0)); #endif attachInterrupt(digitalPinToInterrupt(_dio0), sx126x::onDio0Rise, RISING); } else { detachInterrupt(digitalPinToInterrupt(_dio0)); #ifdef SPI_HAS_NOTUSINGINTERRUPT SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0)); #endif } } void sx126x::receive(int size) { if (size > 0) { implicitHeaderMode(); // tell radio payload length _payloadLength = size; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } else { explicitHeaderMode(); } if (_rxen != -1) { rxAntEnable(); } uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode executeOpcode(OP_RX_6X, mode, 3); } void sx126x::standby() { // STDBY_XOSC uint8_t byte = MODE_STDBY_XOSC_6X; // STDBY_RC // uint8_t byte = MODE_STDBY_RC_6X; executeOpcode(OP_STANDBY_6X, &byte, 1); } void sx126x::sleep() { uint8_t byte = 0x00; executeOpcode(OP_SLEEP_6X, &byte, 1); } void sx126x::enableTCXO() { #if HAS_TCXO #if BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_HELTEC32_V3 uint8_t buf[4] = {MODE_TCXO_3_3V_6X, 0x00, 0x00, 0xFF}; #elif BOARD_MODEL == BOARD_TBEAM uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF}; #elif BOARD_MODEL == BOARD_TDECK uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF}; #elif BOARD_MODEL == BOARD_TBEAM_S_V1 uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF}; #elif BOARD_MODEL == BOARD_RNODE_NG_22 uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF}; #endif executeOpcode(OP_DIO3_TCXO_CTRL_6X, buf, 4); #endif } // TODO: Once enabled, SX1262 needs a complete reset to disable TCXO void sx126x::disableTCXO() { } void sx126x::setTxPower(int level, int outputPin) { // currently no low power mode for SX1262 implemented, assuming PA boost // WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2 // RegTxClampConfig = @address 0x08D8 writeRegister(0x08D8, readRegister(0x08D8) | (0x0F << 1)); uint8_t pa_buf[4]; pa_buf[0] = 0x04; // PADutyCycle needs to be 0x04 to achieve 22dBm output, but can be lowered for better efficiency at lower outputs pa_buf[1] = 0x07; // HPMax at 0x07 is maximum supported for SX1262 pa_buf[2] = 0x00; // DeviceSel 0x00 for SX1262 (0x01 for SX1261) pa_buf[3] = 0x01; // PALut always 0x01 (reserved according to datasheet) executeOpcode(OP_PA_CONFIG_6X, pa_buf, 4); // set pa_config for high power if (level > 22) { level = 22; } else if (level < -9) { level = -9; } writeRegister(REG_OCP_6X, 0x38); // 160mA limit, overcurrent protection uint8_t tx_buf[2]; tx_buf[0] = level; tx_buf[1] = 0x02; // PA ramping time - 40 microseconds executeOpcode(OP_TX_PARAMS_6X, tx_buf, 2); _txp = level; } uint8_t sx126x::getTxPower() { return _txp; } void sx126x::setFrequency(long frequency) { _frequency = frequency; uint8_t buf[4]; uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_6X); buf[0] = ((freq >> 24) & 0xFF); buf[1] = ((freq >> 16) & 0xFF); buf[2] = ((freq >> 8) & 0xFF); buf[3] = (freq & 0xFF); executeOpcode(OP_RF_FREQ_6X, buf, 4); } uint32_t sx126x::getFrequency() { // we can't read the frequency on the sx1262 / 80 uint32_t frequency = _frequency; return frequency; } void sx126x::setSpreadingFactor(int sf) { if (sf < 5) { sf = 5; } else if (sf > 12) { sf = 12; } _sf = sf; handleLowDataRate(); setModulationParams(sf, _bw, _cr, _ldro); } long sx126x::getSignalBandwidth() { int bw = _bw; switch (bw) { case 0x00: return 7.8E3; case 0x01: return 15.6E3; case 0x02: return 31.25E3; case 0x03: return 62.5E3; case 0x04: return 125E3; case 0x05: return 250E3; case 0x06: return 500E3; case 0x08: return 10.4E3; case 0x09: return 20.8E3; case 0x0A: return 41.7E3; } return 0; } void sx126x::handleLowDataRate(){ if ( long( (1<<_sf) / (getSignalBandwidth()/1000)) > 16) { _ldro = 0x01; } else { _ldro = 0x00; } } void sx126x::optimizeModemSensitivity(){ // todo: check if there's anything the sx1262 can do here } void sx126x::setSignalBandwidth(long sbw) { if (sbw <= 7.8E3) { _bw = 0x00; } else if (sbw <= 10.4E3) { _bw = 0x08; } else if (sbw <= 15.6E3) { _bw = 0x01; } else if (sbw <= 20.8E3) { _bw = 0x09; } else if (sbw <= 31.25E3) { _bw = 0x02; } else if (sbw <= 41.7E3) { _bw = 0x0A; } else if (sbw <= 62.5E3) { _bw = 0x03; } else if (sbw <= 125E3) { _bw = 0x04; } else if (sbw <= 250E3) { _bw = 0x05; } else /*if (sbw <= 250E3)*/ { _bw = 0x06; } handleLowDataRate(); setModulationParams(_sf, _bw, _cr, _ldro); optimizeModemSensitivity(); } void sx126x::setCodingRate4(int denominator) { if (denominator < 5) { denominator = 5; } else if (denominator > 8) { denominator = 8; } int cr = denominator - 4; _cr = cr; setModulationParams(_sf, _bw, cr, _ldro); } void sx126x::setPreambleLength(long length) { _preambleLength = length; setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode); } void sx126x::setSyncWord(uint16_t sw) { // TODO: Fix // writeRegister(REG_SYNC_WORD_MSB_6X, (sw & 0xFF00) >> 8); // writeRegister(REG_SYNC_WORD_LSB_6X, sw & 0x00FF); writeRegister(REG_SYNC_WORD_MSB_6X, 0x14); writeRegister(REG_SYNC_WORD_LSB_6X, 0x24); } void sx126x::enableCrc() { _crcMode = 1; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } void sx126x::disableCrc() { _crcMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } byte sx126x::random() { return readRegister(REG_RANDOM_GEN_6X); } void sx126x::setPins(int ss, int reset, int dio0, int busy, int rxen) { _ss = ss; _reset = reset; _dio0 = dio0; _busy = busy; _rxen = rxen; } void sx126x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); } void sx126x::dumpRegisters(Stream& out) { for (int i = 0; i < 128; i++) { out.print("0x"); out.print(i, HEX); out.print(": 0x"); out.println(readRegister(i), HEX); } } void sx126x::explicitHeaderMode() { _implicitHeaderMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } void sx126x::implicitHeaderMode() { _implicitHeaderMode = 1; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } void ISR_VECT sx126x::handleDio0Rise() { uint8_t buf[2]; buf[0] = 0x00; buf[1] = 0x00; executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2); executeOpcode(OP_CLEAR_IRQ_STATUS_6X, buf, 2); if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_6X) == 0) { // received a packet _packetIndex = 0; // read packet length uint8_t rxbuf[2] = {0}; executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2); int packetLength = rxbuf[0]; if (_onReceive) { _onReceive(packetLength); } } } void ISR_VECT sx126x::onDio0Rise() { sx126x_modem.handleDio0Rise(); } sx126x sx126x_modem; #endif