1301 lines
32 KiB
C
1301 lines
32 KiB
C
// Copyright (C) 2023, Mark Qvist
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
#include <EEPROM.h>
|
|
#include <stddef.h>
|
|
#include "Config.h"
|
|
#include "LoRa.h"
|
|
#include "ROM.h"
|
|
#include "Framing.h"
|
|
#include "MD5.h"
|
|
|
|
#if HAS_DISPLAY == true
|
|
#include "Display.h"
|
|
#endif
|
|
|
|
#if HAS_BLUETOOTH == true
|
|
#include "Bluetooth.h"
|
|
#endif
|
|
|
|
#if HAS_PMU == true
|
|
#include "Power.h"
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
#include "Device.h"
|
|
#include "soc/rtc_wdt.h"
|
|
#define ISR_VECT IRAM_ATTR
|
|
#else
|
|
#define ISR_VECT
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
#include <avr/wdt.h>
|
|
#include <util/atomic.h>
|
|
#endif
|
|
|
|
uint8_t boot_vector = 0x00;
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
uint8_t OPTIBOOT_MCUSR __attribute__ ((section(".noinit")));
|
|
void resetFlagsInit(void) __attribute__ ((naked)) __attribute__ ((used)) __attribute__ ((section (".init0")));
|
|
void resetFlagsInit(void) {
|
|
__asm__ __volatile__ ("sts %0, r2\n" : "=m" (OPTIBOOT_MCUSR) :);
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
// TODO: Get ESP32 boot flags
|
|
#endif
|
|
|
|
#if HAS_NP == true
|
|
#include <Adafruit_NeoPixel.h>
|
|
#define NUMPIXELS 1
|
|
#define NP_M 0.15
|
|
Adafruit_NeoPixel pixels(NUMPIXELS, pin_np, NEO_GRB + NEO_KHZ800);
|
|
|
|
uint8_t npr = 0;
|
|
uint8_t npg = 0;
|
|
uint8_t npb = 0;
|
|
bool pixels_started = false;
|
|
void npset(uint8_t r, uint8_t g, uint8_t b) {
|
|
if (pixels_started != true) {
|
|
pixels.begin();
|
|
pixels_started = true;
|
|
}
|
|
|
|
if (r != npr || g != npg || b != npb) {
|
|
npr = r; npg = g; npb = b;
|
|
pixels.setPixelColor(0, pixels.Color(npr*NP_M, npg*NP_M, npb*NP_M));
|
|
pixels.show();
|
|
}
|
|
}
|
|
|
|
void boot_seq() {
|
|
uint8_t rs[] = { 0x00, 0x00, 0x00 };
|
|
uint8_t gs[] = { 0x10, 0x08, 0x00 };
|
|
uint8_t bs[] = { 0x00, 0x08, 0x10 };
|
|
for (int i = 0; i < 1*sizeof(rs); i++) {
|
|
npset(rs[i%sizeof(rs)], gs[i%sizeof(gs)], bs[i%sizeof(bs)]);
|
|
delay(33);
|
|
npset(0x00, 0x00, 0x00);
|
|
delay(66);
|
|
}
|
|
}
|
|
#else
|
|
void boot_seq() { }
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
#if HAS_NP == true
|
|
void led_rx_on() { npset(0, 0, 0xFF); }
|
|
void led_rx_off() { npset(0, 0, 0); }
|
|
void led_tx_on() { npset(0xFF, 0x50, 0x00); }
|
|
void led_tx_off() { npset(0, 0, 0); }
|
|
#elif BOARD_MODEL == BOARD_RNODE_NG_20
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#elif BOARD_MODEL == BOARD_RNODE_NG_21
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#elif BOARD_MODEL == BOARD_TBEAM
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, LOW); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, HIGH); }
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
#if defined(EXTERNAL_LEDS)
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#else
|
|
void led_rx_on() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, LOW); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, HIGH); }
|
|
#endif
|
|
#elif BOARD_MODEL == BOARD_HELTEC32_V2
|
|
#if defined(EXTERNAL_LEDS)
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#else
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#endif
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_1
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#elif BOARD_MODEL == BOARD_HUZZAH32
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#elif BOARD_MODEL == BOARD_GENERIC_ESP32
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#endif
|
|
#endif
|
|
|
|
void hard_reset(void) {
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
wdt_enable(WDTO_15MS);
|
|
while(true) {
|
|
led_tx_on(); led_rx_off();
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
ESP.restart();
|
|
#endif
|
|
}
|
|
|
|
// LED Indication: Error
|
|
void led_indicate_error(int cycles) {
|
|
#if HAS_NP == true
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
npset(0xFF, 0x00, 0x00);
|
|
delay(100);
|
|
npset(0xFF, 0x50, 0x00);
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
npset(0,0,0);
|
|
#else
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
digitalWrite(pin_led_rx, HIGH);
|
|
digitalWrite(pin_led_tx, LOW);
|
|
delay(100);
|
|
digitalWrite(pin_led_rx, LOW);
|
|
digitalWrite(pin_led_tx, HIGH);
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_rx_off();
|
|
led_tx_off();
|
|
#endif
|
|
}
|
|
|
|
// LED Indication: Boot Error
|
|
void led_indicate_boot_error() {
|
|
#if HAS_NP == true
|
|
while(true) {
|
|
npset(0xFF, 0xFF, 0xFF);
|
|
}
|
|
#else
|
|
while (true) {
|
|
led_tx_on();
|
|
led_rx_off();
|
|
delay(10);
|
|
led_rx_on();
|
|
led_tx_off();
|
|
delay(5);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// LED Indication: Warning
|
|
void led_indicate_warning(int cycles) {
|
|
#if HAS_NP == true
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
npset(0xFF, 0x50, 0x00);
|
|
delay(100);
|
|
npset(0x00, 0x00, 0x00);
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
npset(0,0,0);
|
|
#else
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
digitalWrite(pin_led_tx, HIGH);
|
|
while(cycles > 0) {
|
|
led_tx_off();
|
|
delay(100);
|
|
led_tx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_tx_off();
|
|
#endif
|
|
}
|
|
|
|
// LED Indication: Info
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_rx_off();
|
|
delay(100);
|
|
led_rx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_rx_off();
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
#if HAS_NP == true
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
npset(0x00, 0x00, 0xFF);
|
|
delay(100);
|
|
npset(0x00, 0x00, 0x00);
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
npset(0,0,0);
|
|
}
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_1
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_rx_off();
|
|
delay(100);
|
|
led_rx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_rx_off();
|
|
}
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_rx_off();
|
|
delay(100);
|
|
led_rx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_rx_off();
|
|
}
|
|
#else
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_tx_off();
|
|
delay(100);
|
|
led_tx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_tx_off();
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
|
|
unsigned long led_standby_ticks = 0;
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
uint8_t led_standby_min = 1;
|
|
uint8_t led_standby_max = 40;
|
|
unsigned long led_standby_wait = 11000;
|
|
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
|
|
#if HAS_NP == true
|
|
int led_standby_lng = 100;
|
|
int led_standby_cut = 200;
|
|
int led_standby_min = 0;
|
|
int led_standby_max = 375+led_standby_lng;
|
|
int led_notready_min = 0;
|
|
int led_notready_max = led_standby_max;
|
|
int led_notready_value = led_notready_min;
|
|
int8_t led_notready_direction = 0;
|
|
unsigned long led_notready_ticks = 0;
|
|
unsigned long led_standby_wait = 350;
|
|
unsigned long led_console_wait = 1;
|
|
unsigned long led_notready_wait = 200;
|
|
|
|
#else
|
|
uint8_t led_standby_min = 200;
|
|
uint8_t led_standby_max = 255;
|
|
uint8_t led_notready_min = 0;
|
|
uint8_t led_notready_max = 255;
|
|
uint8_t led_notready_value = led_notready_min;
|
|
int8_t led_notready_direction = 0;
|
|
unsigned long led_notready_ticks = 0;
|
|
unsigned long led_standby_wait = 1768;
|
|
unsigned long led_notready_wait = 150;
|
|
#endif
|
|
#endif
|
|
|
|
unsigned long led_standby_value = led_standby_min;
|
|
int8_t led_standby_direction = 0;
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
void led_indicate_standby() {
|
|
led_standby_ticks++;
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
led_standby_value += led_standby_direction;
|
|
analogWrite(pin_led_rx, led_standby_value);
|
|
led_tx_off();
|
|
}
|
|
}
|
|
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
#if HAS_NP == true
|
|
void led_indicate_standby() {
|
|
led_standby_ticks++;
|
|
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
|
|
uint8_t led_standby_intensity;
|
|
led_standby_value += led_standby_direction;
|
|
int led_standby_ti = led_standby_value - led_standby_lng;
|
|
|
|
if (led_standby_ti < 0) {
|
|
led_standby_intensity = 0;
|
|
} else if (led_standby_ti > led_standby_cut) {
|
|
led_standby_intensity = led_standby_cut;
|
|
} else {
|
|
led_standby_intensity = led_standby_ti;
|
|
}
|
|
npset(0x00, 0x00, led_standby_intensity);
|
|
}
|
|
}
|
|
|
|
void led_indicate_console() {
|
|
npset(0x60, 0x00, 0x60);
|
|
// led_standby_ticks++;
|
|
|
|
// if (led_standby_ticks > led_console_wait) {
|
|
// led_standby_ticks = 0;
|
|
|
|
// if (led_standby_value <= led_standby_min) {
|
|
// led_standby_direction = 1;
|
|
// } else if (led_standby_value >= led_standby_max) {
|
|
// led_standby_direction = -1;
|
|
// }
|
|
|
|
// uint8_t led_standby_intensity;
|
|
// led_standby_value += led_standby_direction;
|
|
// int led_standby_ti = led_standby_value - led_standby_lng;
|
|
|
|
// if (led_standby_ti < 0) {
|
|
// led_standby_intensity = 0;
|
|
// } else if (led_standby_ti > led_standby_cut) {
|
|
// led_standby_intensity = led_standby_cut;
|
|
// } else {
|
|
// led_standby_intensity = led_standby_ti;
|
|
// }
|
|
// npset(led_standby_intensity, 0x00, led_standby_intensity);
|
|
// }
|
|
}
|
|
|
|
#else
|
|
void led_indicate_standby() {
|
|
led_standby_ticks++;
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
led_standby_value += led_standby_direction;
|
|
if (led_standby_value > 253) {
|
|
led_tx_on();
|
|
} else {
|
|
led_tx_off();
|
|
}
|
|
#if BOARD_MODEL == BOARD_LORA32_V2_1
|
|
#if defined(EXTERNAL_LEDS)
|
|
led_rx_off();
|
|
#endif
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
#if defined(EXTERNAL_LEDS)
|
|
led_rx_off();
|
|
#endif
|
|
#else
|
|
led_rx_off();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void led_indicate_console() {
|
|
led_indicate_standby();
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
void led_indicate_not_ready() {
|
|
led_standby_ticks++;
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
led_standby_value += led_standby_direction;
|
|
analogWrite(pin_led_tx, led_standby_value);
|
|
led_rx_off();
|
|
}
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
#if HAS_NP == true
|
|
void led_indicate_not_ready() {
|
|
led_standby_ticks++;
|
|
|
|
if (led_standby_ticks > led_notready_wait) {
|
|
led_standby_ticks = 0;
|
|
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
|
|
uint8_t led_standby_intensity;
|
|
led_standby_value += led_standby_direction;
|
|
int led_standby_ti = led_standby_value - led_standby_lng;
|
|
|
|
if (led_standby_ti < 0) {
|
|
led_standby_intensity = 0;
|
|
} else if (led_standby_ti > led_standby_cut) {
|
|
led_standby_intensity = led_standby_cut;
|
|
} else {
|
|
led_standby_intensity = led_standby_ti;
|
|
}
|
|
|
|
npset(led_standby_intensity, 0x00, 0x00);
|
|
}
|
|
}
|
|
#else
|
|
void led_indicate_not_ready() {
|
|
led_notready_ticks++;
|
|
if (led_notready_ticks > led_notready_wait) {
|
|
led_notready_ticks = 0;
|
|
if (led_notready_value <= led_notready_min) {
|
|
led_notready_direction = 1;
|
|
} else if (led_notready_value >= led_notready_max) {
|
|
led_notready_direction = -1;
|
|
}
|
|
led_notready_value += led_notready_direction;
|
|
if (led_notready_value > 128) {
|
|
led_tx_on();
|
|
} else {
|
|
led_tx_off();
|
|
}
|
|
#if BOARD_MODEL == BOARD_LORA32_V2_1
|
|
#if defined(EXTERNAL_LEDS)
|
|
led_rx_off();
|
|
#endif
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
#if defined(EXTERNAL_LEDS)
|
|
led_rx_off();
|
|
#endif
|
|
#else
|
|
led_rx_off();
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
void serial_write(uint8_t byte) {
|
|
#if HAS_BLUETOOTH
|
|
if (bt_state != BT_STATE_CONNECTED) {
|
|
Serial.write(byte);
|
|
} else {
|
|
SerialBT.write(byte);
|
|
}
|
|
#else
|
|
Serial.write(byte);
|
|
#endif
|
|
}
|
|
|
|
void escaped_serial_write(uint8_t byte) {
|
|
if (byte == FEND) { serial_write(FESC); byte = TFEND; }
|
|
if (byte == FESC) { serial_write(FESC); byte = TFESC; }
|
|
serial_write(byte);
|
|
}
|
|
|
|
void kiss_indicate_reset() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_RESET);
|
|
serial_write(CMD_RESET_BYTE);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_error(uint8_t error_code) {
|
|
serial_write(FEND);
|
|
serial_write(CMD_ERROR);
|
|
serial_write(error_code);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_radiostate() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_RADIO_STATE);
|
|
serial_write(radio_online);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_rx() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_STAT_RX);
|
|
escaped_serial_write(stat_rx>>24);
|
|
escaped_serial_write(stat_rx>>16);
|
|
escaped_serial_write(stat_rx>>8);
|
|
escaped_serial_write(stat_rx);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_tx() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_STAT_TX);
|
|
escaped_serial_write(stat_tx>>24);
|
|
escaped_serial_write(stat_tx>>16);
|
|
escaped_serial_write(stat_tx>>8);
|
|
escaped_serial_write(stat_tx);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_rssi() {
|
|
uint8_t packet_rssi_val = (uint8_t)(last_rssi+rssi_offset);
|
|
serial_write(FEND);
|
|
serial_write(CMD_STAT_RSSI);
|
|
escaped_serial_write(packet_rssi_val);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_snr() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_STAT_SNR);
|
|
escaped_serial_write(last_snr_raw);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_radio_lock() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_RADIO_LOCK);
|
|
serial_write(radio_locked);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_spreadingfactor() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_SF);
|
|
serial_write((uint8_t)lora_sf);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_codingrate() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_CR);
|
|
serial_write((uint8_t)lora_cr);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_implicit_length() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_IMPLICIT);
|
|
serial_write(implicit_l);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_txpower() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_TXPOWER);
|
|
serial_write((uint8_t)lora_txp);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_bandwidth() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_BANDWIDTH);
|
|
escaped_serial_write(lora_bw>>24);
|
|
escaped_serial_write(lora_bw>>16);
|
|
escaped_serial_write(lora_bw>>8);
|
|
escaped_serial_write(lora_bw);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_frequency() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_FREQUENCY);
|
|
escaped_serial_write(lora_freq>>24);
|
|
escaped_serial_write(lora_freq>>16);
|
|
escaped_serial_write(lora_freq>>8);
|
|
escaped_serial_write(lora_freq);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_random(uint8_t byte) {
|
|
serial_write(FEND);
|
|
serial_write(CMD_RANDOM);
|
|
serial_write(byte);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_fbstate() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_FB_EXT);
|
|
#if HAS_DISPLAY
|
|
if (disp_ext_fb) {
|
|
serial_write(0x01);
|
|
} else {
|
|
serial_write(0x00);
|
|
}
|
|
#else
|
|
serial_write(0xFF);
|
|
#endif
|
|
serial_write(FEND);
|
|
}
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
void kiss_indicate_device_hash() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_DEV_HASH);
|
|
for (int i = 0; i < DEV_HASH_LEN; i++) {
|
|
uint8_t byte = dev_hash[i];
|
|
escaped_serial_write(byte);
|
|
}
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_target_fw_hash() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_HASHES);
|
|
serial_write(0x01);
|
|
for (int i = 0; i < DEV_HASH_LEN; i++) {
|
|
uint8_t byte = dev_firmware_hash_target[i];
|
|
escaped_serial_write(byte);
|
|
}
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_fw_hash() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_HASHES);
|
|
serial_write(0x02);
|
|
for (int i = 0; i < DEV_HASH_LEN; i++) {
|
|
uint8_t byte = dev_firmware_hash[i];
|
|
escaped_serial_write(byte);
|
|
}
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_bootloader_hash() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_HASHES);
|
|
serial_write(0x03);
|
|
for (int i = 0; i < DEV_HASH_LEN; i++) {
|
|
uint8_t byte = dev_bootloader_hash[i];
|
|
escaped_serial_write(byte);
|
|
}
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_partition_table_hash() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_HASHES);
|
|
serial_write(0x04);
|
|
for (int i = 0; i < DEV_HASH_LEN; i++) {
|
|
uint8_t byte = dev_partition_table_hash[i];
|
|
escaped_serial_write(byte);
|
|
}
|
|
serial_write(FEND);
|
|
}
|
|
#endif
|
|
|
|
void kiss_indicate_fb() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_FB_READ);
|
|
#if HAS_DISPLAY
|
|
for (int i = 0; i < 512; i++) {
|
|
uint8_t byte = fb[i];
|
|
escaped_serial_write(byte);
|
|
}
|
|
#else
|
|
serial_write(0xFF);
|
|
#endif
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_ready() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_READY);
|
|
serial_write(0x01);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_not_ready() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_READY);
|
|
serial_write(0x00);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_promisc() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_PROMISC);
|
|
if (promisc) {
|
|
serial_write(0x01);
|
|
} else {
|
|
serial_write(0x00);
|
|
}
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_detect() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_DETECT);
|
|
serial_write(DETECT_RESP);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_version() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_FW_VERSION);
|
|
serial_write(MAJ_VERS);
|
|
serial_write(MIN_VERS);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_platform() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_PLATFORM);
|
|
serial_write(PLATFORM);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_board() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_BOARD);
|
|
serial_write(BOARD_MODEL);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_mcu() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_MCU);
|
|
serial_write(MCU_VARIANT);
|
|
serial_write(FEND);
|
|
}
|
|
|
|
inline bool isSplitPacket(uint8_t header) {
|
|
return (header & FLAG_SPLIT);
|
|
}
|
|
|
|
inline uint8_t packetSequence(uint8_t header) {
|
|
return header >> 4;
|
|
}
|
|
|
|
void setSpreadingFactor() {
|
|
if (radio_online) LoRa.setSpreadingFactor(lora_sf);
|
|
}
|
|
|
|
void setCodingRate() {
|
|
if (radio_online) LoRa.setCodingRate4(lora_cr);
|
|
}
|
|
|
|
void set_implicit_length(uint8_t len) {
|
|
implicit_l = len;
|
|
if (implicit_l != 0) {
|
|
implicit = true;
|
|
} else {
|
|
implicit = false;
|
|
}
|
|
}
|
|
|
|
int getTxPower() {
|
|
uint8_t txp = LoRa.getTxPower();
|
|
return (int)txp;
|
|
}
|
|
|
|
void setTXPower() {
|
|
if (radio_online) {
|
|
if (model == MODEL_A2) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_A3) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
|
|
if (model == MODEL_A4) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
|
|
if (model == MODEL_A7) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_A8) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_A9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
|
|
if (model == MODEL_B3) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_B4) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_B8) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_B9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
|
|
if (model == MODEL_C4) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_C9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
|
|
if (model == MODEL_E4) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_E9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
|
|
if (model == MODEL_FE) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
if (model == MODEL_FF) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
|
|
}
|
|
}
|
|
|
|
|
|
void getBandwidth() {
|
|
if (radio_online) {
|
|
lora_bw = LoRa.getSignalBandwidth();
|
|
}
|
|
}
|
|
|
|
void setBandwidth() {
|
|
if (radio_online) {
|
|
LoRa.setSignalBandwidth(lora_bw);
|
|
getBandwidth();
|
|
}
|
|
}
|
|
|
|
void getFrequency() {
|
|
if (radio_online) {
|
|
lora_freq = LoRa.getFrequency();
|
|
}
|
|
}
|
|
|
|
void setFrequency() {
|
|
if (radio_online) {
|
|
LoRa.setFrequency(lora_freq);
|
|
getFrequency();
|
|
}
|
|
}
|
|
|
|
uint8_t getRandom() {
|
|
if (radio_online) {
|
|
return LoRa.random();
|
|
} else {
|
|
return 0x00;
|
|
}
|
|
}
|
|
|
|
void promisc_enable() {
|
|
promisc = true;
|
|
}
|
|
|
|
void promisc_disable() {
|
|
promisc = false;
|
|
}
|
|
|
|
bool eeprom_info_locked() {
|
|
uint8_t lock_byte = EEPROM.read(eeprom_addr(ADDR_INFO_LOCK));
|
|
if (lock_byte == INFO_LOCK_BYTE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void eeprom_dump_info() {
|
|
for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) {
|
|
uint8_t byte = EEPROM.read(eeprom_addr(addr));
|
|
escaped_serial_write(byte);
|
|
}
|
|
}
|
|
|
|
void eeprom_dump_config() {
|
|
for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) {
|
|
uint8_t byte = EEPROM.read(eeprom_addr(addr));
|
|
escaped_serial_write(byte);
|
|
}
|
|
}
|
|
|
|
void eeprom_dump_all() {
|
|
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
|
|
uint8_t byte = EEPROM.read(eeprom_addr(addr));
|
|
escaped_serial_write(byte);
|
|
}
|
|
}
|
|
|
|
void kiss_dump_eeprom() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_ROM_READ);
|
|
eeprom_dump_all();
|
|
serial_write(FEND);
|
|
}
|
|
|
|
void eeprom_update(int mapped_addr, uint8_t byte) {
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
EEPROM.update(mapped_addr, byte);
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
if (EEPROM.read(mapped_addr) != byte) {
|
|
EEPROM.write(mapped_addr, byte);
|
|
EEPROM.commit();
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
void eeprom_write(uint8_t addr, uint8_t byte) {
|
|
if (!eeprom_info_locked() && addr >= 0 && addr < EEPROM_RESERVED) {
|
|
eeprom_update(eeprom_addr(addr), byte);
|
|
} else {
|
|
kiss_indicate_error(ERROR_EEPROM_LOCKED);
|
|
}
|
|
}
|
|
|
|
void eeprom_erase() {
|
|
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
|
|
eeprom_update(eeprom_addr(addr), 0xFF);
|
|
}
|
|
hard_reset();
|
|
}
|
|
|
|
bool eeprom_lock_set() {
|
|
if (EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)) == INFO_LOCK_BYTE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_product_valid() {
|
|
uint8_t rval = EEPROM.read(eeprom_addr(ADDR_PRODUCT));
|
|
|
|
#if PLATFORM == PLATFORM_AVR
|
|
if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW) {
|
|
#elif PLATFORM == PLATFORM_ESP32
|
|
if (rval == PRODUCT_RNODE || rval == BOARD_RNODE_NG_20 || rval == BOARD_RNODE_NG_21 || rval == PRODUCT_HMBRW || rval == PRODUCT_TBEAM || rval == PRODUCT_T32_20 || rval == PRODUCT_T32_21 || rval == PRODUCT_H32_V2) {
|
|
#else
|
|
if (false) {
|
|
#endif
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_model_valid() {
|
|
model = EEPROM.read(eeprom_addr(ADDR_MODEL));
|
|
#if BOARD_MODEL == BOARD_RNODE
|
|
if (model == MODEL_A4 || model == MODEL_A9 || model == MODEL_FF || model == MODEL_FE) {
|
|
#elif BOARD_MODEL == BOARD_RNODE_NG_20
|
|
if (model == MODEL_A3 || model == MODEL_A8) {
|
|
#elif BOARD_MODEL == BOARD_RNODE_NG_21
|
|
if (model == MODEL_A2 || model == MODEL_A7) {
|
|
#elif BOARD_MODEL == BOARD_HMBRW
|
|
if (model == MODEL_FF || model == MODEL_FE) {
|
|
#elif BOARD_MODEL == BOARD_TBEAM
|
|
if (model == MODEL_E4 || model == MODEL_E9) {
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
if (model == MODEL_B3 || model == MODEL_B8) {
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_1
|
|
if (model == MODEL_B4 || model == MODEL_B9) {
|
|
#elif BOARD_MODEL == BOARD_HELTEC32_V2
|
|
if (model == MODEL_C4 || model == MODEL_C9) {
|
|
#elif BOARD_MODEL == BOARD_HUZZAH32
|
|
if (model == MODEL_FF) {
|
|
#elif BOARD_MODEL == BOARD_GENERIC_ESP32
|
|
if (model == MODEL_FF || model == MODEL_FE) {
|
|
#else
|
|
if (false) {
|
|
#endif
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_hwrev_valid() {
|
|
hwrev = EEPROM.read(eeprom_addr(ADDR_HW_REV));
|
|
if (hwrev != 0x00 && hwrev != 0xFF) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_checksum_valid() {
|
|
char *data = (char*)malloc(CHECKSUMMED_SIZE);
|
|
for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) {
|
|
char byte = EEPROM.read(eeprom_addr(i));
|
|
data[i] = byte;
|
|
}
|
|
|
|
unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE);
|
|
bool checksum_valid = true;
|
|
for (uint8_t i = 0; i < 16; i++) {
|
|
uint8_t stored_chk_byte = EEPROM.read(eeprom_addr(ADDR_CHKSUM+i));
|
|
uint8_t calced_chk_byte = (uint8_t)hash[i];
|
|
if (stored_chk_byte != calced_chk_byte) {
|
|
checksum_valid = false;
|
|
}
|
|
}
|
|
|
|
free(hash);
|
|
free(data);
|
|
return checksum_valid;
|
|
}
|
|
|
|
void bt_conf_save(bool is_enabled) {
|
|
if (is_enabled) {
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BT), BT_ENABLE_BYTE);
|
|
} else {
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BT), 0x00);
|
|
}
|
|
}
|
|
|
|
bool eeprom_have_conf() {
|
|
if (EEPROM.read(eeprom_addr(ADDR_CONF_OK)) == CONF_OK_BYTE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void eeprom_conf_load() {
|
|
if (eeprom_have_conf()) {
|
|
lora_sf = EEPROM.read(eeprom_addr(ADDR_CONF_SF));
|
|
lora_cr = EEPROM.read(eeprom_addr(ADDR_CONF_CR));
|
|
lora_txp = EEPROM.read(eeprom_addr(ADDR_CONF_TXP));
|
|
lora_freq = (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x00) << 24 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x01) << 16 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x02) << 8 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x03);
|
|
lora_bw = (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x00) << 24 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x01) << 16 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x02) << 8 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x03);
|
|
}
|
|
}
|
|
|
|
void eeprom_conf_save() {
|
|
if (hw_ready && radio_online) {
|
|
eeprom_update(eeprom_addr(ADDR_CONF_SF), lora_sf);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_CR), lora_cr);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_TXP), lora_txp);
|
|
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x00, lora_bw>>24);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x01, lora_bw>>16);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x02, lora_bw>>8);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x03, lora_bw);
|
|
|
|
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x00, lora_freq>>24);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x01, lora_freq>>16);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x02, lora_freq>>8);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x03, lora_freq);
|
|
|
|
eeprom_update(eeprom_addr(ADDR_CONF_OK), CONF_OK_BYTE);
|
|
led_indicate_info(10);
|
|
} else {
|
|
led_indicate_warning(10);
|
|
}
|
|
}
|
|
|
|
void eeprom_conf_delete() {
|
|
eeprom_update(eeprom_addr(ADDR_CONF_OK), 0x00);
|
|
}
|
|
|
|
void unlock_rom() {
|
|
led_indicate_error(50);
|
|
eeprom_erase();
|
|
}
|
|
|
|
typedef struct FIFOBuffer
|
|
{
|
|
unsigned char *begin;
|
|
unsigned char *end;
|
|
unsigned char * volatile head;
|
|
unsigned char * volatile tail;
|
|
} FIFOBuffer;
|
|
|
|
inline bool fifo_isempty(const FIFOBuffer *f) {
|
|
return f->head == f->tail;
|
|
}
|
|
|
|
inline bool fifo_isfull(const FIFOBuffer *f) {
|
|
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
|
|
}
|
|
|
|
inline void fifo_push(FIFOBuffer *f, unsigned char c) {
|
|
*(f->tail) = c;
|
|
|
|
if (f->tail == f->end) {
|
|
f->tail = f->begin;
|
|
} else {
|
|
f->tail++;
|
|
}
|
|
}
|
|
|
|
inline unsigned char fifo_pop(FIFOBuffer *f) {
|
|
if(f->head == f->end) {
|
|
f->head = f->begin;
|
|
return *(f->end);
|
|
} else {
|
|
return *(f->head++);
|
|
}
|
|
}
|
|
|
|
inline void fifo_flush(FIFOBuffer *f) {
|
|
f->head = f->tail;
|
|
}
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
static inline bool fifo_isempty_locked(const FIFOBuffer *f) {
|
|
bool result;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
result = fifo_isempty(f);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static inline bool fifo_isfull_locked(const FIFOBuffer *f) {
|
|
bool result;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
result = fifo_isfull(f);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static inline void fifo_push_locked(FIFOBuffer *f, unsigned char c) {
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
fifo_push(f, c);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
static inline unsigned char fifo_pop_locked(FIFOBuffer *f) {
|
|
unsigned char c;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
c = fifo_pop(f);
|
|
}
|
|
return c;
|
|
}
|
|
*/
|
|
|
|
inline void fifo_init(FIFOBuffer *f, unsigned char *buffer, size_t size) {
|
|
f->head = f->tail = f->begin = buffer;
|
|
f->end = buffer + size;
|
|
}
|
|
|
|
inline size_t fifo_len(FIFOBuffer *f) {
|
|
return f->end - f->begin;
|
|
}
|
|
|
|
typedef struct FIFOBuffer16
|
|
{
|
|
uint16_t *begin;
|
|
uint16_t *end;
|
|
uint16_t * volatile head;
|
|
uint16_t * volatile tail;
|
|
} FIFOBuffer16;
|
|
|
|
inline bool fifo16_isempty(const FIFOBuffer16 *f) {
|
|
return f->head == f->tail;
|
|
}
|
|
|
|
inline bool fifo16_isfull(const FIFOBuffer16 *f) {
|
|
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
|
|
}
|
|
|
|
inline void fifo16_push(FIFOBuffer16 *f, uint16_t c) {
|
|
*(f->tail) = c;
|
|
|
|
if (f->tail == f->end) {
|
|
f->tail = f->begin;
|
|
} else {
|
|
f->tail++;
|
|
}
|
|
}
|
|
|
|
inline uint16_t fifo16_pop(FIFOBuffer16 *f) {
|
|
if(f->head == f->end) {
|
|
f->head = f->begin;
|
|
return *(f->end);
|
|
} else {
|
|
return *(f->head++);
|
|
}
|
|
}
|
|
|
|
inline void fifo16_flush(FIFOBuffer16 *f) {
|
|
f->head = f->tail;
|
|
}
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
static inline bool fifo16_isempty_locked(const FIFOBuffer16 *f) {
|
|
bool result;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
result = fifo16_isempty(f);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
static inline bool fifo16_isfull_locked(const FIFOBuffer16 *f) {
|
|
bool result;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
result = fifo16_isfull(f);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static inline void fifo16_push_locked(FIFOBuffer16 *f, uint16_t c) {
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
fifo16_push(f, c);
|
|
}
|
|
}
|
|
|
|
static inline size_t fifo16_pop_locked(FIFOBuffer16 *f) {
|
|
size_t c;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
c = fifo16_pop(f);
|
|
}
|
|
return c;
|
|
}
|
|
*/
|
|
|
|
inline void fifo16_init(FIFOBuffer16 *f, uint16_t *buffer, uint16_t size) {
|
|
f->head = f->tail = f->begin = buffer;
|
|
f->end = buffer + size;
|
|
}
|
|
|
|
inline uint16_t fifo16_len(FIFOBuffer16 *f) {
|
|
return (f->end - f->begin);
|
|
}
|