2022-05-31 02:17:19 -06:00
|
|
|
# coding=utf-8
|
2023-03-01 02:31:00 -07:00
|
|
|
# Copyright 2023 The HuggingFace Inc. team.
|
2022-05-31 02:17:19 -06:00
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import importlib
|
|
|
|
import inspect
|
|
|
|
import os
|
|
|
|
import re
|
|
|
|
import warnings
|
|
|
|
from collections import OrderedDict
|
|
|
|
from difflib import get_close_matches
|
|
|
|
from pathlib import Path
|
|
|
|
|
2022-08-17 08:47:20 -06:00
|
|
|
from diffusers.models.auto import get_values
|
|
|
|
from diffusers.utils import ENV_VARS_TRUE_VALUES, is_flax_available, is_tf_available, is_torch_available
|
2022-05-31 02:17:19 -06:00
|
|
|
|
|
|
|
|
|
|
|
# All paths are set with the intent you should run this script from the root of the repo with the command
|
|
|
|
# python utils/check_repo.py
|
2022-08-17 08:47:20 -06:00
|
|
|
PATH_TO_DIFFUSERS = "src/diffusers"
|
2022-05-31 02:17:19 -06:00
|
|
|
PATH_TO_TESTS = "tests"
|
|
|
|
PATH_TO_DOC = "docs/source/en"
|
|
|
|
|
|
|
|
# Update this list with models that are supposed to be private.
|
|
|
|
PRIVATE_MODELS = [
|
|
|
|
"DPRSpanPredictor",
|
|
|
|
"RealmBertModel",
|
|
|
|
"T5Stack",
|
|
|
|
"TFDPRSpanPredictor",
|
|
|
|
]
|
|
|
|
|
|
|
|
# Update this list for models that are not tested with a comment explaining the reason it should not be.
|
|
|
|
# Being in this list is an exception and should **not** be the rule.
|
|
|
|
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
|
|
|
|
# models to ignore for not tested
|
|
|
|
"OPTDecoder", # Building part of bigger (tested) model.
|
|
|
|
"DecisionTransformerGPT2Model", # Building part of bigger (tested) model.
|
|
|
|
"SegformerDecodeHead", # Building part of bigger (tested) model.
|
|
|
|
"PLBartEncoder", # Building part of bigger (tested) model.
|
|
|
|
"PLBartDecoder", # Building part of bigger (tested) model.
|
|
|
|
"PLBartDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"BigBirdPegasusEncoder", # Building part of bigger (tested) model.
|
|
|
|
"BigBirdPegasusDecoder", # Building part of bigger (tested) model.
|
|
|
|
"BigBirdPegasusDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"DetrEncoder", # Building part of bigger (tested) model.
|
|
|
|
"DetrDecoder", # Building part of bigger (tested) model.
|
|
|
|
"DetrDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"M2M100Encoder", # Building part of bigger (tested) model.
|
|
|
|
"M2M100Decoder", # Building part of bigger (tested) model.
|
|
|
|
"Speech2TextEncoder", # Building part of bigger (tested) model.
|
|
|
|
"Speech2TextDecoder", # Building part of bigger (tested) model.
|
|
|
|
"LEDEncoder", # Building part of bigger (tested) model.
|
|
|
|
"LEDDecoder", # Building part of bigger (tested) model.
|
|
|
|
"BartDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"BartEncoder", # Building part of bigger (tested) model.
|
|
|
|
"BertLMHeadModel", # Needs to be setup as decoder.
|
|
|
|
"BlenderbotSmallEncoder", # Building part of bigger (tested) model.
|
|
|
|
"BlenderbotSmallDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"BlenderbotEncoder", # Building part of bigger (tested) model.
|
|
|
|
"BlenderbotDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"MBartEncoder", # Building part of bigger (tested) model.
|
|
|
|
"MBartDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"MegatronBertLMHeadModel", # Building part of bigger (tested) model.
|
|
|
|
"MegatronBertEncoder", # Building part of bigger (tested) model.
|
|
|
|
"MegatronBertDecoder", # Building part of bigger (tested) model.
|
|
|
|
"MegatronBertDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"PegasusEncoder", # Building part of bigger (tested) model.
|
|
|
|
"PegasusDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"DPREncoder", # Building part of bigger (tested) model.
|
|
|
|
"ProphetNetDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"RealmBertModel", # Building part of bigger (tested) model.
|
|
|
|
"RealmReader", # Not regular model.
|
|
|
|
"RealmScorer", # Not regular model.
|
|
|
|
"RealmForOpenQA", # Not regular model.
|
|
|
|
"ReformerForMaskedLM", # Needs to be setup as decoder.
|
|
|
|
"Speech2Text2DecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"TFDPREncoder", # Building part of bigger (tested) model.
|
2022-06-07 02:35:53 -06:00
|
|
|
"TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFModelMixin ?)
|
2022-05-31 02:17:19 -06:00
|
|
|
"TFRobertaForMultipleChoice", # TODO: fix
|
|
|
|
"TrOCRDecoderWrapper", # Building part of bigger (tested) model.
|
|
|
|
"SeparableConv1D", # Building part of bigger (tested) model.
|
|
|
|
"FlaxBartForCausalLM", # Building part of bigger (tested) model.
|
|
|
|
"FlaxBertForCausalLM", # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
|
|
|
|
"OPTDecoderWrapper",
|
|
|
|
]
|
|
|
|
|
|
|
|
# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
|
|
|
|
# trigger the common tests.
|
|
|
|
TEST_FILES_WITH_NO_COMMON_TESTS = [
|
|
|
|
"models/decision_transformer/test_modeling_decision_transformer.py",
|
|
|
|
"models/camembert/test_modeling_camembert.py",
|
|
|
|
"models/mt5/test_modeling_flax_mt5.py",
|
|
|
|
"models/mbart/test_modeling_mbart.py",
|
|
|
|
"models/mt5/test_modeling_mt5.py",
|
|
|
|
"models/pegasus/test_modeling_pegasus.py",
|
|
|
|
"models/camembert/test_modeling_tf_camembert.py",
|
|
|
|
"models/mt5/test_modeling_tf_mt5.py",
|
|
|
|
"models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
|
|
|
|
"models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
|
|
|
|
"models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
|
|
|
|
"models/xlm_roberta/test_modeling_xlm_roberta.py",
|
|
|
|
"models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
|
|
|
|
"models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
|
|
|
|
"models/decision_transformer/test_modeling_decision_transformer.py",
|
|
|
|
]
|
|
|
|
|
|
|
|
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
|
|
|
|
# should **not** be the rule.
|
|
|
|
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
|
|
|
|
# models to ignore for model xxx mapping
|
|
|
|
"DPTForDepthEstimation",
|
|
|
|
"DecisionTransformerGPT2Model",
|
|
|
|
"GLPNForDepthEstimation",
|
|
|
|
"ViltForQuestionAnswering",
|
|
|
|
"ViltForImagesAndTextClassification",
|
|
|
|
"ViltForImageAndTextRetrieval",
|
|
|
|
"ViltForMaskedLM",
|
|
|
|
"XGLMEncoder",
|
|
|
|
"XGLMDecoder",
|
|
|
|
"XGLMDecoderWrapper",
|
|
|
|
"PerceiverForMultimodalAutoencoding",
|
|
|
|
"PerceiverForOpticalFlow",
|
|
|
|
"SegformerDecodeHead",
|
|
|
|
"FlaxBeitForMaskedImageModeling",
|
|
|
|
"PLBartEncoder",
|
|
|
|
"PLBartDecoder",
|
|
|
|
"PLBartDecoderWrapper",
|
|
|
|
"BeitForMaskedImageModeling",
|
|
|
|
"CLIPTextModel",
|
|
|
|
"CLIPVisionModel",
|
|
|
|
"TFCLIPTextModel",
|
|
|
|
"TFCLIPVisionModel",
|
|
|
|
"FlaxCLIPTextModel",
|
|
|
|
"FlaxCLIPVisionModel",
|
|
|
|
"FlaxWav2Vec2ForCTC",
|
|
|
|
"DetrForSegmentation",
|
|
|
|
"DPRReader",
|
|
|
|
"FlaubertForQuestionAnswering",
|
|
|
|
"FlavaImageCodebook",
|
|
|
|
"FlavaTextModel",
|
|
|
|
"FlavaImageModel",
|
|
|
|
"FlavaMultimodalModel",
|
|
|
|
"GPT2DoubleHeadsModel",
|
|
|
|
"LukeForMaskedLM",
|
|
|
|
"LukeForEntityClassification",
|
|
|
|
"LukeForEntityPairClassification",
|
|
|
|
"LukeForEntitySpanClassification",
|
|
|
|
"OpenAIGPTDoubleHeadsModel",
|
|
|
|
"RagModel",
|
|
|
|
"RagSequenceForGeneration",
|
|
|
|
"RagTokenForGeneration",
|
|
|
|
"RealmEmbedder",
|
|
|
|
"RealmForOpenQA",
|
|
|
|
"RealmScorer",
|
|
|
|
"RealmReader",
|
|
|
|
"TFDPRReader",
|
|
|
|
"TFGPT2DoubleHeadsModel",
|
|
|
|
"TFOpenAIGPTDoubleHeadsModel",
|
|
|
|
"TFRagModel",
|
|
|
|
"TFRagSequenceForGeneration",
|
|
|
|
"TFRagTokenForGeneration",
|
|
|
|
"Wav2Vec2ForCTC",
|
|
|
|
"HubertForCTC",
|
|
|
|
"SEWForCTC",
|
|
|
|
"SEWDForCTC",
|
|
|
|
"XLMForQuestionAnswering",
|
|
|
|
"XLNetForQuestionAnswering",
|
|
|
|
"SeparableConv1D",
|
|
|
|
"VisualBertForRegionToPhraseAlignment",
|
|
|
|
"VisualBertForVisualReasoning",
|
|
|
|
"VisualBertForQuestionAnswering",
|
|
|
|
"VisualBertForMultipleChoice",
|
|
|
|
"TFWav2Vec2ForCTC",
|
|
|
|
"TFHubertForCTC",
|
|
|
|
"MaskFormerForInstanceSegmentation",
|
|
|
|
]
|
|
|
|
|
|
|
|
# Update this list for models that have multiple model types for the same
|
|
|
|
# model doc
|
|
|
|
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
|
|
|
|
[
|
|
|
|
("data2vec-text", "data2vec"),
|
|
|
|
("data2vec-audio", "data2vec"),
|
|
|
|
("data2vec-vision", "data2vec"),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# This is to make sure the transformers module imported is the one in the repo.
|
|
|
|
spec = importlib.util.spec_from_file_location(
|
2022-08-17 08:47:20 -06:00
|
|
|
"diffusers",
|
|
|
|
os.path.join(PATH_TO_DIFFUSERS, "__init__.py"),
|
|
|
|
submodule_search_locations=[PATH_TO_DIFFUSERS],
|
2022-05-31 02:17:19 -06:00
|
|
|
)
|
2022-08-17 08:47:20 -06:00
|
|
|
diffusers = spec.loader.load_module()
|
2022-05-31 02:17:19 -06:00
|
|
|
|
|
|
|
|
|
|
|
def check_model_list():
|
|
|
|
"""Check the model list inside the transformers library."""
|
2022-08-17 08:47:20 -06:00
|
|
|
# Get the models from the directory structure of `src/diffusers/models/`
|
|
|
|
models_dir = os.path.join(PATH_TO_DIFFUSERS, "models")
|
2022-05-31 02:17:19 -06:00
|
|
|
_models = []
|
|
|
|
for model in os.listdir(models_dir):
|
|
|
|
model_dir = os.path.join(models_dir, model)
|
|
|
|
if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
|
|
|
|
_models.append(model)
|
|
|
|
|
|
|
|
# Get the models from the directory structure of `src/transformers/models/`
|
2022-08-17 08:47:20 -06:00
|
|
|
models = [model for model in dir(diffusers.models) if not model.startswith("__")]
|
2022-05-31 02:17:19 -06:00
|
|
|
|
|
|
|
missing_models = sorted(list(set(_models).difference(models)))
|
|
|
|
if missing_models:
|
|
|
|
raise Exception(
|
|
|
|
f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# If some modeling modules should be ignored for all checks, they should be added in the nested list
|
|
|
|
# _ignore_modules of this function.
|
|
|
|
def get_model_modules():
|
|
|
|
"""Get the model modules inside the transformers library."""
|
|
|
|
_ignore_modules = [
|
|
|
|
"modeling_auto",
|
|
|
|
"modeling_encoder_decoder",
|
|
|
|
"modeling_marian",
|
|
|
|
"modeling_mmbt",
|
|
|
|
"modeling_outputs",
|
|
|
|
"modeling_retribert",
|
|
|
|
"modeling_utils",
|
|
|
|
"modeling_flax_auto",
|
|
|
|
"modeling_flax_encoder_decoder",
|
|
|
|
"modeling_flax_utils",
|
|
|
|
"modeling_speech_encoder_decoder",
|
|
|
|
"modeling_flax_speech_encoder_decoder",
|
|
|
|
"modeling_flax_vision_encoder_decoder",
|
|
|
|
"modeling_transfo_xl_utilities",
|
|
|
|
"modeling_tf_auto",
|
|
|
|
"modeling_tf_encoder_decoder",
|
|
|
|
"modeling_tf_outputs",
|
|
|
|
"modeling_tf_pytorch_utils",
|
|
|
|
"modeling_tf_utils",
|
|
|
|
"modeling_tf_transfo_xl_utilities",
|
|
|
|
"modeling_tf_vision_encoder_decoder",
|
|
|
|
"modeling_vision_encoder_decoder",
|
|
|
|
]
|
|
|
|
modules = []
|
2022-08-17 08:47:20 -06:00
|
|
|
for model in dir(diffusers.models):
|
2022-05-31 02:17:19 -06:00
|
|
|
# There are some magic dunder attributes in the dir, we ignore them
|
|
|
|
if not model.startswith("__"):
|
2022-08-17 08:47:20 -06:00
|
|
|
model_module = getattr(diffusers.models, model)
|
2022-05-31 02:17:19 -06:00
|
|
|
for submodule in dir(model_module):
|
|
|
|
if submodule.startswith("modeling") and submodule not in _ignore_modules:
|
|
|
|
modeling_module = getattr(model_module, submodule)
|
|
|
|
if inspect.ismodule(modeling_module):
|
|
|
|
modules.append(modeling_module)
|
|
|
|
return modules
|
|
|
|
|
|
|
|
|
|
|
|
def get_models(module, include_pretrained=False):
|
|
|
|
"""Get the objects in module that are models."""
|
|
|
|
models = []
|
2022-08-17 08:47:20 -06:00
|
|
|
model_classes = (diffusers.ModelMixin, diffusers.TFModelMixin, diffusers.FlaxModelMixin)
|
2022-05-31 02:17:19 -06:00
|
|
|
for attr_name in dir(module):
|
|
|
|
if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
|
|
|
|
continue
|
|
|
|
attr = getattr(module, attr_name)
|
|
|
|
if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
|
|
|
|
models.append((attr_name, attr))
|
|
|
|
return models
|
|
|
|
|
|
|
|
|
|
|
|
def is_a_private_model(model):
|
|
|
|
"""Returns True if the model should not be in the main init."""
|
|
|
|
if model in PRIVATE_MODELS:
|
|
|
|
return True
|
|
|
|
|
|
|
|
# Wrapper, Encoder and Decoder are all privates
|
|
|
|
if model.endswith("Wrapper"):
|
|
|
|
return True
|
|
|
|
if model.endswith("Encoder"):
|
|
|
|
return True
|
|
|
|
if model.endswith("Decoder"):
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def check_models_are_in_init():
|
|
|
|
"""Checks all models defined in the library are in the main init."""
|
|
|
|
models_not_in_init = []
|
2022-08-17 08:47:20 -06:00
|
|
|
dir_transformers = dir(diffusers)
|
2022-05-31 02:17:19 -06:00
|
|
|
for module in get_model_modules():
|
|
|
|
models_not_in_init += [
|
|
|
|
model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
|
|
|
|
]
|
|
|
|
|
|
|
|
# Remove private models
|
|
|
|
models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
|
|
|
|
if len(models_not_in_init) > 0:
|
|
|
|
raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")
|
|
|
|
|
|
|
|
|
|
|
|
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
|
|
|
|
# nested list _ignore_files of this function.
|
|
|
|
def get_model_test_files():
|
|
|
|
"""Get the model test files.
|
|
|
|
|
|
|
|
The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
|
|
|
|
considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
|
|
|
|
"""
|
|
|
|
|
|
|
|
_ignore_files = [
|
|
|
|
"test_modeling_common",
|
|
|
|
"test_modeling_encoder_decoder",
|
|
|
|
"test_modeling_flax_encoder_decoder",
|
|
|
|
"test_modeling_flax_speech_encoder_decoder",
|
|
|
|
"test_modeling_marian",
|
|
|
|
"test_modeling_tf_common",
|
|
|
|
"test_modeling_tf_encoder_decoder",
|
|
|
|
]
|
|
|
|
test_files = []
|
|
|
|
# Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
|
|
|
|
model_test_root = os.path.join(PATH_TO_TESTS, "models")
|
|
|
|
model_test_dirs = []
|
|
|
|
for x in os.listdir(model_test_root):
|
|
|
|
x = os.path.join(model_test_root, x)
|
|
|
|
if os.path.isdir(x):
|
|
|
|
model_test_dirs.append(x)
|
|
|
|
|
|
|
|
for target_dir in [PATH_TO_TESTS] + model_test_dirs:
|
|
|
|
for file_or_dir in os.listdir(target_dir):
|
|
|
|
path = os.path.join(target_dir, file_or_dir)
|
|
|
|
if os.path.isfile(path):
|
|
|
|
filename = os.path.split(path)[-1]
|
2023-02-07 15:46:23 -07:00
|
|
|
if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
|
2022-05-31 02:17:19 -06:00
|
|
|
file = os.path.join(*path.split(os.sep)[1:])
|
|
|
|
test_files.append(file)
|
|
|
|
|
|
|
|
return test_files
|
|
|
|
|
|
|
|
|
|
|
|
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
|
|
|
|
# for the all_model_classes variable.
|
|
|
|
def find_tested_models(test_file):
|
|
|
|
"""Parse the content of test_file to detect what's in all_model_classes"""
|
|
|
|
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
|
|
|
|
with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
|
|
|
|
content = f.read()
|
|
|
|
all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
|
|
|
|
# Check with one less parenthesis as well
|
|
|
|
all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
|
|
|
|
if len(all_models) > 0:
|
|
|
|
model_tested = []
|
|
|
|
for entry in all_models:
|
|
|
|
for line in entry.split(","):
|
|
|
|
name = line.strip()
|
|
|
|
if len(name) > 0:
|
|
|
|
model_tested.append(name)
|
|
|
|
return model_tested
|
|
|
|
|
|
|
|
|
|
|
|
def check_models_are_tested(module, test_file):
|
|
|
|
"""Check models defined in module are tested in test_file."""
|
2022-06-07 02:35:53 -06:00
|
|
|
# XxxModelMixin are not tested
|
2022-05-31 02:17:19 -06:00
|
|
|
defined_models = get_models(module)
|
|
|
|
tested_models = find_tested_models(test_file)
|
|
|
|
if tested_models is None:
|
|
|
|
if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
|
|
|
|
return
|
|
|
|
return [
|
|
|
|
f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
|
|
|
|
+ "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
|
|
|
|
+ "`utils/check_repo.py`."
|
|
|
|
]
|
|
|
|
failures = []
|
|
|
|
for model_name, _ in defined_models:
|
|
|
|
if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
|
|
|
|
failures.append(
|
|
|
|
f"{model_name} is defined in {module.__name__} but is not tested in "
|
|
|
|
+ f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
|
|
|
|
+ "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
|
|
|
|
+ "in the file `utils/check_repo.py`."
|
|
|
|
)
|
|
|
|
return failures
|
|
|
|
|
|
|
|
|
|
|
|
def check_all_models_are_tested():
|
|
|
|
"""Check all models are properly tested."""
|
|
|
|
modules = get_model_modules()
|
|
|
|
test_files = get_model_test_files()
|
|
|
|
failures = []
|
|
|
|
for module in modules:
|
|
|
|
test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
|
|
|
|
if len(test_file) == 0:
|
|
|
|
failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
|
|
|
|
elif len(test_file) > 1:
|
|
|
|
failures.append(f"{module.__name__} has several test files: {test_file}.")
|
|
|
|
else:
|
|
|
|
test_file = test_file[0]
|
|
|
|
new_failures = check_models_are_tested(module, test_file)
|
|
|
|
if new_failures is not None:
|
|
|
|
failures += new_failures
|
|
|
|
if len(failures) > 0:
|
|
|
|
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
|
|
|
|
|
|
|
|
|
|
|
def get_all_auto_configured_models():
|
|
|
|
"""Return the list of all models in at least one auto class."""
|
|
|
|
result = set() # To avoid duplicates we concatenate all model classes in a set.
|
|
|
|
if is_torch_available():
|
2022-08-17 08:47:20 -06:00
|
|
|
for attr_name in dir(diffusers.models.auto.modeling_auto):
|
2022-05-31 02:17:19 -06:00
|
|
|
if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
2022-08-17 08:47:20 -06:00
|
|
|
result = result | set(get_values(getattr(diffusers.models.auto.modeling_auto, attr_name)))
|
2022-05-31 02:17:19 -06:00
|
|
|
if is_tf_available():
|
2022-08-17 08:47:20 -06:00
|
|
|
for attr_name in dir(diffusers.models.auto.modeling_tf_auto):
|
2022-05-31 02:17:19 -06:00
|
|
|
if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
2022-08-17 08:47:20 -06:00
|
|
|
result = result | set(get_values(getattr(diffusers.models.auto.modeling_tf_auto, attr_name)))
|
2022-05-31 02:17:19 -06:00
|
|
|
if is_flax_available():
|
2022-08-17 08:47:20 -06:00
|
|
|
for attr_name in dir(diffusers.models.auto.modeling_flax_auto):
|
2022-05-31 02:17:19 -06:00
|
|
|
if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
2022-08-17 08:47:20 -06:00
|
|
|
result = result | set(get_values(getattr(diffusers.models.auto.modeling_flax_auto, attr_name)))
|
2022-05-31 02:17:19 -06:00
|
|
|
return [cls for cls in result]
|
|
|
|
|
|
|
|
|
|
|
|
def ignore_unautoclassed(model_name):
|
|
|
|
"""Rules to determine if `name` should be in an auto class."""
|
|
|
|
# Special white list
|
|
|
|
if model_name in IGNORE_NON_AUTO_CONFIGURED:
|
|
|
|
return True
|
|
|
|
# Encoder and Decoder should be ignored
|
|
|
|
if "Encoder" in model_name or "Decoder" in model_name:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def check_models_are_auto_configured(module, all_auto_models):
|
|
|
|
"""Check models defined in module are each in an auto class."""
|
|
|
|
defined_models = get_models(module)
|
|
|
|
failures = []
|
|
|
|
for model_name, _ in defined_models:
|
|
|
|
if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
|
|
|
|
failures.append(
|
|
|
|
f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
|
|
|
|
"If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
|
|
|
|
"`utils/check_repo.py`."
|
|
|
|
)
|
|
|
|
return failures
|
|
|
|
|
|
|
|
|
|
|
|
def check_all_models_are_auto_configured():
|
|
|
|
"""Check all models are each in an auto class."""
|
|
|
|
missing_backends = []
|
|
|
|
if not is_torch_available():
|
|
|
|
missing_backends.append("PyTorch")
|
|
|
|
if not is_tf_available():
|
|
|
|
missing_backends.append("TensorFlow")
|
|
|
|
if not is_flax_available():
|
|
|
|
missing_backends.append("Flax")
|
|
|
|
if len(missing_backends) > 0:
|
|
|
|
missing = ", ".join(missing_backends)
|
|
|
|
if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
|
|
|
|
raise Exception(
|
|
|
|
"Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
|
|
|
|
f"Transformers repo, the following are missing: {missing}."
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
warnings.warn(
|
|
|
|
"Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
|
|
|
|
f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
|
|
|
|
"didn't make any change in one of those backends modeling files, you should probably execute the "
|
|
|
|
"command above to be on the safe side."
|
|
|
|
)
|
|
|
|
modules = get_model_modules()
|
|
|
|
all_auto_models = get_all_auto_configured_models()
|
|
|
|
failures = []
|
|
|
|
for module in modules:
|
|
|
|
new_failures = check_models_are_auto_configured(module, all_auto_models)
|
|
|
|
if new_failures is not None:
|
|
|
|
failures += new_failures
|
|
|
|
if len(failures) > 0:
|
|
|
|
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
|
|
|
|
|
|
|
|
|
|
|
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")
|
|
|
|
|
|
|
|
|
|
|
|
def check_decorator_order(filename):
|
|
|
|
"""Check that in the test file `filename` the slow decorator is always last."""
|
|
|
|
with open(filename, "r", encoding="utf-8", newline="\n") as f:
|
|
|
|
lines = f.readlines()
|
|
|
|
decorator_before = None
|
|
|
|
errors = []
|
|
|
|
for i, line in enumerate(lines):
|
|
|
|
search = _re_decorator.search(line)
|
|
|
|
if search is not None:
|
|
|
|
decorator_name = search.groups()[0]
|
|
|
|
if decorator_before is not None and decorator_name.startswith("parameterized"):
|
|
|
|
errors.append(i)
|
|
|
|
decorator_before = decorator_name
|
|
|
|
elif decorator_before is not None:
|
|
|
|
decorator_before = None
|
|
|
|
return errors
|
|
|
|
|
|
|
|
|
|
|
|
def check_all_decorator_order():
|
|
|
|
"""Check that in all test files, the slow decorator is always last."""
|
|
|
|
errors = []
|
|
|
|
for fname in os.listdir(PATH_TO_TESTS):
|
|
|
|
if fname.endswith(".py"):
|
|
|
|
filename = os.path.join(PATH_TO_TESTS, fname)
|
|
|
|
new_errors = check_decorator_order(filename)
|
|
|
|
errors += [f"- {filename}, line {i}" for i in new_errors]
|
|
|
|
if len(errors) > 0:
|
|
|
|
msg = "\n".join(errors)
|
|
|
|
raise ValueError(
|
|
|
|
"The parameterized decorator (and its variants) should always be first, but this is not the case in the"
|
|
|
|
f" following files:\n{msg}"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def find_all_documented_objects():
|
|
|
|
"""Parse the content of all doc files to detect which classes and functions it documents"""
|
|
|
|
documented_obj = []
|
|
|
|
for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
|
|
|
|
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
|
|
|
|
content = f.read()
|
|
|
|
raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
|
|
|
|
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
|
|
|
|
for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
|
|
|
|
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
|
|
|
|
content = f.read()
|
|
|
|
raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
|
|
|
|
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
|
|
|
|
return documented_obj
|
|
|
|
|
|
|
|
|
|
|
|
# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
|
|
|
|
DEPRECATED_OBJECTS = [
|
|
|
|
"AutoModelWithLMHead",
|
|
|
|
"BartPretrainedModel",
|
|
|
|
"DataCollator",
|
|
|
|
"DataCollatorForSOP",
|
|
|
|
"GlueDataset",
|
|
|
|
"GlueDataTrainingArguments",
|
|
|
|
"LineByLineTextDataset",
|
|
|
|
"LineByLineWithRefDataset",
|
|
|
|
"LineByLineWithSOPTextDataset",
|
|
|
|
"PretrainedBartModel",
|
|
|
|
"PretrainedFSMTModel",
|
|
|
|
"SingleSentenceClassificationProcessor",
|
|
|
|
"SquadDataTrainingArguments",
|
|
|
|
"SquadDataset",
|
|
|
|
"SquadExample",
|
|
|
|
"SquadFeatures",
|
|
|
|
"SquadV1Processor",
|
|
|
|
"SquadV2Processor",
|
|
|
|
"TFAutoModelWithLMHead",
|
|
|
|
"TFBartPretrainedModel",
|
|
|
|
"TextDataset",
|
|
|
|
"TextDatasetForNextSentencePrediction",
|
|
|
|
"Wav2Vec2ForMaskedLM",
|
|
|
|
"Wav2Vec2Tokenizer",
|
|
|
|
"glue_compute_metrics",
|
|
|
|
"glue_convert_examples_to_features",
|
|
|
|
"glue_output_modes",
|
|
|
|
"glue_processors",
|
|
|
|
"glue_tasks_num_labels",
|
|
|
|
"squad_convert_examples_to_features",
|
|
|
|
"xnli_compute_metrics",
|
|
|
|
"xnli_output_modes",
|
|
|
|
"xnli_processors",
|
|
|
|
"xnli_tasks_num_labels",
|
|
|
|
"TFTrainer",
|
|
|
|
"TFTrainingArguments",
|
|
|
|
]
|
|
|
|
|
|
|
|
# Exceptionally, some objects should not be documented after all rules passed.
|
|
|
|
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
|
|
|
|
UNDOCUMENTED_OBJECTS = [
|
|
|
|
"AddedToken", # This is a tokenizers class.
|
|
|
|
"BasicTokenizer", # Internal, should never have been in the main init.
|
|
|
|
"CharacterTokenizer", # Internal, should never have been in the main init.
|
|
|
|
"DPRPretrainedReader", # Like an Encoder.
|
|
|
|
"DummyObject", # Just picked by mistake sometimes.
|
|
|
|
"MecabTokenizer", # Internal, should never have been in the main init.
|
|
|
|
"ModelCard", # Internal type.
|
|
|
|
"SqueezeBertModule", # Internal building block (should have been called SqueezeBertLayer)
|
|
|
|
"TFDPRPretrainedReader", # Like an Encoder.
|
|
|
|
"TransfoXLCorpus", # Internal type.
|
|
|
|
"WordpieceTokenizer", # Internal, should never have been in the main init.
|
|
|
|
"absl", # External module
|
|
|
|
"add_end_docstrings", # Internal, should never have been in the main init.
|
|
|
|
"add_start_docstrings", # Internal, should never have been in the main init.
|
|
|
|
"cached_path", # Internal used for downloading models.
|
|
|
|
"convert_tf_weight_name_to_pt_weight_name", # Internal used to convert model weights
|
|
|
|
"logger", # Internal logger
|
|
|
|
"logging", # External module
|
|
|
|
"requires_backends", # Internal function
|
|
|
|
]
|
|
|
|
|
|
|
|
# This list should be empty. Objects in it should get their own doc page.
|
|
|
|
SHOULD_HAVE_THEIR_OWN_PAGE = [
|
|
|
|
# Benchmarks
|
|
|
|
"PyTorchBenchmark",
|
|
|
|
"PyTorchBenchmarkArguments",
|
|
|
|
"TensorFlowBenchmark",
|
|
|
|
"TensorFlowBenchmarkArguments",
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def ignore_undocumented(name):
|
|
|
|
"""Rules to determine if `name` should be undocumented."""
|
|
|
|
# NOT DOCUMENTED ON PURPOSE.
|
|
|
|
# Constants uppercase are not documented.
|
|
|
|
if name.isupper():
|
|
|
|
return True
|
2022-06-07 02:35:53 -06:00
|
|
|
# ModelMixins / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
|
2022-05-31 02:17:19 -06:00
|
|
|
if (
|
2022-06-07 02:35:53 -06:00
|
|
|
name.endswith("ModelMixin")
|
2022-05-31 02:17:19 -06:00
|
|
|
or name.endswith("Decoder")
|
|
|
|
or name.endswith("Encoder")
|
|
|
|
or name.endswith("Layer")
|
|
|
|
or name.endswith("Embeddings")
|
|
|
|
or name.endswith("Attention")
|
|
|
|
):
|
|
|
|
return True
|
|
|
|
# Submodules are not documented.
|
2022-08-17 08:47:20 -06:00
|
|
|
if os.path.isdir(os.path.join(PATH_TO_DIFFUSERS, name)) or os.path.isfile(
|
|
|
|
os.path.join(PATH_TO_DIFFUSERS, f"{name}.py")
|
2022-05-31 02:17:19 -06:00
|
|
|
):
|
|
|
|
return True
|
|
|
|
# All load functions are not documented.
|
|
|
|
if name.startswith("load_tf") or name.startswith("load_pytorch"):
|
|
|
|
return True
|
|
|
|
# is_xxx_available functions are not documented.
|
|
|
|
if name.startswith("is_") and name.endswith("_available"):
|
|
|
|
return True
|
|
|
|
# Deprecated objects are not documented.
|
|
|
|
if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
|
|
|
|
return True
|
|
|
|
# MMBT model does not really work.
|
|
|
|
if name.startswith("MMBT"):
|
|
|
|
return True
|
|
|
|
if name in SHOULD_HAVE_THEIR_OWN_PAGE:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def check_all_objects_are_documented():
|
|
|
|
"""Check all models are properly documented."""
|
|
|
|
documented_objs = find_all_documented_objects()
|
2022-08-17 08:47:20 -06:00
|
|
|
modules = diffusers._modules
|
|
|
|
objects = [c for c in dir(diffusers) if c not in modules and not c.startswith("_")]
|
2022-05-31 02:17:19 -06:00
|
|
|
undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
|
|
|
|
if len(undocumented_objs) > 0:
|
|
|
|
raise Exception(
|
|
|
|
"The following objects are in the public init so should be documented:\n - "
|
|
|
|
+ "\n - ".join(undocumented_objs)
|
|
|
|
)
|
|
|
|
check_docstrings_are_in_md()
|
|
|
|
check_model_type_doc_match()
|
|
|
|
|
|
|
|
|
|
|
|
def check_model_type_doc_match():
|
|
|
|
"""Check all doc pages have a corresponding model type."""
|
|
|
|
model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
|
|
|
|
model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]
|
|
|
|
|
2022-08-17 08:47:20 -06:00
|
|
|
model_types = list(diffusers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
|
2022-05-31 02:17:19 -06:00
|
|
|
model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
|
|
|
|
|
|
|
|
errors = []
|
|
|
|
for m in model_docs:
|
|
|
|
if m not in model_types and m != "auto":
|
|
|
|
close_matches = get_close_matches(m, model_types)
|
|
|
|
error_message = f"{m} is not a proper model identifier."
|
|
|
|
if len(close_matches) > 0:
|
|
|
|
close_matches = "/".join(close_matches)
|
|
|
|
error_message += f" Did you mean {close_matches}?"
|
|
|
|
errors.append(error_message)
|
|
|
|
|
|
|
|
if len(errors) > 0:
|
|
|
|
raise ValueError(
|
|
|
|
"Some model doc pages do not match any existing model type:\n"
|
|
|
|
+ "\n".join(errors)
|
|
|
|
+ "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
|
|
|
|
"models/auto/configuration_auto.py."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
|
|
|
|
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
|
|
|
|
# Re pattern to catch things between double backquotes.
|
|
|
|
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
|
|
|
|
# Re pattern to catch example introduction.
|
|
|
|
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)
|
|
|
|
|
|
|
|
|
|
|
|
def is_rst_docstring(docstring):
|
|
|
|
"""
|
|
|
|
Returns `True` if `docstring` is written in rst.
|
|
|
|
"""
|
|
|
|
if _re_rst_special_words.search(docstring) is not None:
|
|
|
|
return True
|
|
|
|
if _re_double_backquotes.search(docstring) is not None:
|
|
|
|
return True
|
|
|
|
if _re_rst_example.search(docstring) is not None:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def check_docstrings_are_in_md():
|
|
|
|
"""Check all docstrings are in md"""
|
|
|
|
files_with_rst = []
|
2022-08-17 08:47:20 -06:00
|
|
|
for file in Path(PATH_TO_DIFFUSERS).glob("**/*.py"):
|
2022-05-31 02:17:19 -06:00
|
|
|
with open(file, "r") as f:
|
|
|
|
code = f.read()
|
|
|
|
docstrings = code.split('"""')
|
|
|
|
|
|
|
|
for idx, docstring in enumerate(docstrings):
|
|
|
|
if idx % 2 == 0 or not is_rst_docstring(docstring):
|
|
|
|
continue
|
|
|
|
files_with_rst.append(file)
|
|
|
|
break
|
|
|
|
|
|
|
|
if len(files_with_rst) > 0:
|
|
|
|
raise ValueError(
|
|
|
|
"The following files have docstrings written in rst:\n"
|
|
|
|
+ "\n".join([f"- {f}" for f in files_with_rst])
|
|
|
|
+ "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
|
|
|
|
"(`pip install git+https://github.com/huggingface/doc-builder`)"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def check_repo_quality():
|
|
|
|
"""Check all models are properly tested and documented."""
|
|
|
|
print("Checking all models are included.")
|
|
|
|
check_model_list()
|
|
|
|
print("Checking all models are public.")
|
|
|
|
check_models_are_in_init()
|
|
|
|
print("Checking all models are properly tested.")
|
|
|
|
check_all_decorator_order()
|
|
|
|
check_all_models_are_tested()
|
|
|
|
print("Checking all objects are properly documented.")
|
|
|
|
check_all_objects_are_documented()
|
|
|
|
print("Checking all models are in at least one auto class.")
|
|
|
|
check_all_models_are_auto_configured()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
check_repo_quality()
|