102 lines
3.5 KiB
Python
102 lines
3.5 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import argparse
|
||
|
import json
|
||
|
import os
|
||
|
|
||
|
from tensorflow.core.protobuf.saved_model_pb2 import SavedModel
|
||
|
|
||
|
|
||
|
# All paths are set with the intent you should run this script from the root of the repo with the command
|
||
|
# python utils/check_copies.py
|
||
|
REPO_PATH = "."
|
||
|
|
||
|
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
|
||
|
INTERNAL_OPS = [
|
||
|
"Assert",
|
||
|
"AssignVariableOp",
|
||
|
"EmptyTensorList",
|
||
|
"MergeV2Checkpoints",
|
||
|
"ReadVariableOp",
|
||
|
"ResourceGather",
|
||
|
"RestoreV2",
|
||
|
"SaveV2",
|
||
|
"ShardedFilename",
|
||
|
"StatefulPartitionedCall",
|
||
|
"StaticRegexFullMatch",
|
||
|
"VarHandleOp",
|
||
|
]
|
||
|
|
||
|
|
||
|
def onnx_compliancy(saved_model_path, strict, opset):
|
||
|
saved_model = SavedModel()
|
||
|
onnx_ops = []
|
||
|
|
||
|
with open(os.path.join(REPO_PATH, "utils", "tf_ops", "onnx.json")) as f:
|
||
|
onnx_opsets = json.load(f)["opsets"]
|
||
|
|
||
|
for i in range(1, opset + 1):
|
||
|
onnx_ops.extend(onnx_opsets[str(i)])
|
||
|
|
||
|
with open(saved_model_path, "rb") as f:
|
||
|
saved_model.ParseFromString(f.read())
|
||
|
|
||
|
model_op_names = set()
|
||
|
|
||
|
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
|
||
|
for meta_graph in saved_model.meta_graphs:
|
||
|
# Add operations in the graph definition
|
||
|
model_op_names.update(node.op for node in meta_graph.graph_def.node)
|
||
|
|
||
|
# Go through the functions in the graph definition
|
||
|
for func in meta_graph.graph_def.library.function:
|
||
|
# Add operations in each function
|
||
|
model_op_names.update(node.op for node in func.node_def)
|
||
|
|
||
|
# Convert to list, sorted if you want
|
||
|
model_op_names = sorted(model_op_names)
|
||
|
incompatible_ops = []
|
||
|
|
||
|
for op in model_op_names:
|
||
|
if op not in onnx_ops and op not in INTERNAL_OPS:
|
||
|
incompatible_ops.append(op)
|
||
|
|
||
|
if strict and len(incompatible_ops) > 0:
|
||
|
raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops)
|
||
|
elif len(incompatible_ops) > 0:
|
||
|
print(f"Found the following incompatible ops for the opset {opset}:")
|
||
|
print(*incompatible_ops, sep="\n")
|
||
|
else:
|
||
|
print(f"The saved model {saved_model_path} can properly be converted with ONNX.")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).")
|
||
|
parser.add_argument(
|
||
|
"--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested."
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model."
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)"
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
if args.framework == "onnx":
|
||
|
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
|