130 lines
4.8 KiB
Python
130 lines
4.8 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 HuggingFace Inc.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import gc
|
||
|
import tempfile
|
||
|
import unittest
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from diffusers import VersatileDiffusionPipeline
|
||
|
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
|
||
|
|
||
|
from ...test_pipelines_common import PipelineTesterMixin
|
||
|
|
||
|
|
||
|
torch.backends.cuda.matmul.allow_tf32 = False
|
||
|
|
||
|
|
||
|
class VersatileDiffusionMegaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@slow
|
||
|
@require_torch_gpu
|
||
|
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
|
||
|
def tearDown(self):
|
||
|
# clean up the VRAM after each test
|
||
|
super().tearDown()
|
||
|
gc.collect()
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
def test_from_pretrained_save_pretrained(self):
|
||
|
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
|
||
|
pipe.to(torch_device)
|
||
|
pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
prompt_image = load_image(
|
||
|
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
|
||
|
)
|
||
|
|
||
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||
|
image = pipe.dual_guided(
|
||
|
prompt="first prompt",
|
||
|
image=prompt_image,
|
||
|
text_to_image_strength=0.75,
|
||
|
generator=generator,
|
||
|
guidance_scale=7.5,
|
||
|
num_inference_steps=2,
|
||
|
output_type="numpy",
|
||
|
).images
|
||
|
|
||
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
||
|
pipe.save_pretrained(tmpdirname)
|
||
|
pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
|
||
|
pipe.to(torch_device)
|
||
|
pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
generator = generator.manual_seed(0)
|
||
|
new_image = pipe.dual_guided(
|
||
|
prompt="first prompt",
|
||
|
image=prompt_image,
|
||
|
text_to_image_strength=0.75,
|
||
|
generator=generator,
|
||
|
guidance_scale=7.5,
|
||
|
num_inference_steps=2,
|
||
|
output_type="numpy",
|
||
|
).images
|
||
|
|
||
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
|
||
|
|
||
|
def test_inference_dual_guided_then_text_to_image(self):
|
||
|
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
|
||
|
pipe.to(torch_device)
|
||
|
pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
prompt = "cyberpunk 2077"
|
||
|
init_image = load_image(
|
||
|
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
|
||
|
)
|
||
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||
|
image = pipe.dual_guided(
|
||
|
prompt=prompt,
|
||
|
image=init_image,
|
||
|
text_to_image_strength=0.75,
|
||
|
generator=generator,
|
||
|
guidance_scale=7.5,
|
||
|
num_inference_steps=50,
|
||
|
output_type="numpy",
|
||
|
).images
|
||
|
|
||
|
image_slice = image[0, 253:256, 253:256, -1]
|
||
|
|
||
|
assert image.shape == (1, 512, 512, 3)
|
||
|
expected_slice = np.array([0.014, 0.0112, 0.0136, 0.0145, 0.0107, 0.0113, 0.0272, 0.0215, 0.0216])
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
|
||
|
prompt = "A painting of a squirrel eating a burger "
|
||
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||
|
image = pipe.text_to_image(
|
||
|
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
|
||
|
).images
|
||
|
|
||
|
image_slice = image[0, 253:256, 253:256, -1]
|
||
|
|
||
|
assert image.shape == (1, 512, 512, 3)
|
||
|
expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
|
||
|
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
|
||
|
image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images[0]
|
||
|
|
||
|
image_slice = image[0, 253:256, 253:256, -1]
|
||
|
|
||
|
assert image.shape == (1, 512, 512, 3)
|
||
|
expected_slice = np.array([0.0657, 0.0529, 0.0455, 0.0802, 0.0570, 0.0179, 0.0267, 0.0483, 0.0769])
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|