2022-10-27 06:25:04 -06:00
|
|
|
import argparse
|
|
|
|
import hashlib
|
|
|
|
import logging
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.utils.checkpoint
|
|
|
|
from torch.utils.data import Dataset
|
|
|
|
|
|
|
|
import jax
|
|
|
|
import jax.numpy as jnp
|
|
|
|
import optax
|
|
|
|
import transformers
|
|
|
|
from diffusers import (
|
|
|
|
FlaxAutoencoderKL,
|
|
|
|
FlaxDDPMScheduler,
|
|
|
|
FlaxPNDMScheduler,
|
|
|
|
FlaxStableDiffusionPipeline,
|
|
|
|
FlaxUNet2DConditionModel,
|
|
|
|
)
|
|
|
|
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
|
|
|
|
from flax import jax_utils
|
|
|
|
from flax.training import train_state
|
|
|
|
from flax.training.common_utils import shard
|
|
|
|
from huggingface_hub import HfFolder, Repository, whoami
|
|
|
|
from PIL import Image
|
|
|
|
from torchvision import transforms
|
|
|
|
from tqdm.auto import tqdm
|
|
|
|
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--pretrained_model_name_or_path",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
required=True,
|
|
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--tokenizer_name",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--instance_data_dir",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
required=True,
|
|
|
|
help="A folder containing the training data of instance images.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--class_data_dir",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
required=False,
|
|
|
|
help="A folder containing the training data of class images.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--instance_prompt",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="The prompt with identifier specifying the instance",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--class_prompt",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="The prompt to specify images in the same class as provided instance images.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--with_prior_preservation",
|
|
|
|
default=False,
|
|
|
|
action="store_true",
|
|
|
|
help="Flag to add prior preservation loss.",
|
|
|
|
)
|
|
|
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--num_class_images",
|
|
|
|
type=int,
|
|
|
|
default=100,
|
|
|
|
help=(
|
|
|
|
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
|
|
|
|
" sampled with class_prompt."
|
|
|
|
),
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--output_dir",
|
|
|
|
type=str,
|
|
|
|
default="text-inversion-model",
|
|
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
|
|
)
|
|
|
|
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--resolution",
|
|
|
|
type=int,
|
|
|
|
default=512,
|
|
|
|
help=(
|
|
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
|
|
" resolution"
|
|
|
|
),
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
|
|
|
)
|
|
|
|
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
|
|
|
parser.add_argument(
|
|
|
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
|
|
|
)
|
|
|
|
parser.add_argument("--num_train_epochs", type=int, default=1)
|
|
|
|
parser.add_argument(
|
|
|
|
"--max_train_steps",
|
|
|
|
type=int,
|
|
|
|
default=None,
|
|
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--learning_rate",
|
|
|
|
type=float,
|
|
|
|
default=5e-6,
|
|
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--scale_lr",
|
|
|
|
action="store_true",
|
|
|
|
default=False,
|
|
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--lr_scheduler",
|
|
|
|
type=str,
|
|
|
|
default="constant",
|
|
|
|
help=(
|
|
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
|
|
' "constant", "constant_with_warmup"]'
|
|
|
|
),
|
|
|
|
)
|
|
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
|
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
|
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
|
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--hub_model_id",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--logging_dir",
|
|
|
|
type=str,
|
|
|
|
default="logs",
|
|
|
|
help=(
|
|
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
|
|
),
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--mixed_precision",
|
|
|
|
type=str,
|
|
|
|
default="no",
|
|
|
|
choices=["no", "fp16", "bf16"],
|
|
|
|
help=(
|
|
|
|
"Whether to use mixed precision. Choose"
|
|
|
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
|
|
|
"and an Nvidia Ampere GPU."
|
|
|
|
),
|
|
|
|
)
|
|
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
|
|
args.local_rank = env_local_rank
|
|
|
|
|
|
|
|
if args.instance_data_dir is None:
|
|
|
|
raise ValueError("You must specify a train data directory.")
|
|
|
|
|
|
|
|
if args.with_prior_preservation:
|
|
|
|
if args.class_data_dir is None:
|
|
|
|
raise ValueError("You must specify a data directory for class images.")
|
|
|
|
if args.class_prompt is None:
|
|
|
|
raise ValueError("You must specify prompt for class images.")
|
|
|
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
class DreamBoothDataset(Dataset):
|
|
|
|
"""
|
|
|
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
|
|
|
It pre-processes the images and the tokenizes prompts.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
instance_data_root,
|
|
|
|
instance_prompt,
|
|
|
|
tokenizer,
|
|
|
|
class_data_root=None,
|
|
|
|
class_prompt=None,
|
|
|
|
size=512,
|
|
|
|
center_crop=False,
|
|
|
|
):
|
|
|
|
self.size = size
|
|
|
|
self.center_crop = center_crop
|
|
|
|
self.tokenizer = tokenizer
|
|
|
|
|
|
|
|
self.instance_data_root = Path(instance_data_root)
|
|
|
|
if not self.instance_data_root.exists():
|
|
|
|
raise ValueError("Instance images root doesn't exists.")
|
|
|
|
|
|
|
|
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
|
|
|
self.num_instance_images = len(self.instance_images_path)
|
|
|
|
self.instance_prompt = instance_prompt
|
|
|
|
self._length = self.num_instance_images
|
|
|
|
|
|
|
|
if class_data_root is not None:
|
|
|
|
self.class_data_root = Path(class_data_root)
|
|
|
|
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.class_images_path = list(self.class_data_root.iterdir())
|
|
|
|
self.num_class_images = len(self.class_images_path)
|
|
|
|
self._length = max(self.num_class_images, self.num_instance_images)
|
|
|
|
self.class_prompt = class_prompt
|
|
|
|
else:
|
|
|
|
self.class_data_root = None
|
|
|
|
|
|
|
|
self.image_transforms = transforms.Compose(
|
|
|
|
[
|
|
|
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
|
|
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize([0.5], [0.5]),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self._length
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
example = {}
|
|
|
|
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
|
|
|
if not instance_image.mode == "RGB":
|
|
|
|
instance_image = instance_image.convert("RGB")
|
|
|
|
example["instance_images"] = self.image_transforms(instance_image)
|
|
|
|
example["instance_prompt_ids"] = self.tokenizer(
|
|
|
|
self.instance_prompt,
|
|
|
|
padding="do_not_pad",
|
|
|
|
truncation=True,
|
|
|
|
max_length=self.tokenizer.model_max_length,
|
|
|
|
).input_ids
|
|
|
|
|
|
|
|
if self.class_data_root:
|
|
|
|
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
|
|
|
if not class_image.mode == "RGB":
|
|
|
|
class_image = class_image.convert("RGB")
|
|
|
|
example["class_images"] = self.image_transforms(class_image)
|
|
|
|
example["class_prompt_ids"] = self.tokenizer(
|
|
|
|
self.class_prompt,
|
|
|
|
padding="do_not_pad",
|
|
|
|
truncation=True,
|
|
|
|
max_length=self.tokenizer.model_max_length,
|
|
|
|
).input_ids
|
|
|
|
|
|
|
|
return example
|
|
|
|
|
|
|
|
|
|
|
|
class PromptDataset(Dataset):
|
|
|
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
|
|
|
|
|
|
|
def __init__(self, prompt, num_samples):
|
|
|
|
self.prompt = prompt
|
|
|
|
self.num_samples = num_samples
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.num_samples
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
example = {}
|
|
|
|
example["prompt"] = self.prompt
|
|
|
|
example["index"] = index
|
|
|
|
return example
|
|
|
|
|
|
|
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
|
|
|
if token is None:
|
|
|
|
token = HfFolder.get_token()
|
|
|
|
if organization is None:
|
|
|
|
username = whoami(token)["name"]
|
|
|
|
return f"{username}/{model_id}"
|
|
|
|
else:
|
|
|
|
return f"{organization}/{model_id}"
|
|
|
|
|
|
|
|
|
|
|
|
def get_params_to_save(params):
|
|
|
|
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
|
|
level=logging.INFO,
|
|
|
|
)
|
|
|
|
# Setup logging, we only want one process per machine to log things on the screen.
|
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
|
|
|
if jax.process_index() == 0:
|
|
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
else:
|
|
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
|
|
|
|
if args.seed is not None:
|
|
|
|
set_seed(args.seed)
|
|
|
|
|
|
|
|
if jax.process_index() == 0:
|
|
|
|
if args.push_to_hub:
|
|
|
|
if args.hub_model_id is None:
|
|
|
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
|
|
|
else:
|
|
|
|
repo_name = args.hub_model_id
|
|
|
|
repo = Repository(args.output_dir, clone_from=repo_name)
|
|
|
|
|
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
|
|
|
if "step_*" not in gitignore:
|
|
|
|
gitignore.write("step_*\n")
|
|
|
|
if "epoch_*" not in gitignore:
|
|
|
|
gitignore.write("epoch_*\n")
|
|
|
|
elif args.output_dir is not None:
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
|
|
|
|
rng = jax.random.PRNGKey(args.seed)
|
|
|
|
|
|
|
|
if args.with_prior_preservation:
|
|
|
|
class_images_dir = Path(args.class_data_dir)
|
|
|
|
if not class_images_dir.exists():
|
|
|
|
class_images_dir.mkdir(parents=True)
|
|
|
|
cur_class_images = len(list(class_images_dir.iterdir()))
|
|
|
|
|
|
|
|
if cur_class_images < args.num_class_images:
|
|
|
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
|
|
|
|
args.pretrained_model_name_or_path, safety_checker=None
|
|
|
|
)
|
|
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
|
|
|
|
|
|
num_new_images = args.num_class_images - cur_class_images
|
|
|
|
logger.info(f"Number of class images to sample: {num_new_images}.")
|
|
|
|
|
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
2022-11-04 06:49:57 -06:00
|
|
|
total_sample_batch_size = args.sample_batch_size * jax.local_device_count()
|
|
|
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size)
|
2022-10-27 06:25:04 -06:00
|
|
|
|
|
|
|
for example in tqdm(
|
|
|
|
sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0
|
|
|
|
):
|
|
|
|
prompt_ids = pipeline.prepare_inputs(example["prompt"])
|
|
|
|
prompt_ids = shard(prompt_ids)
|
|
|
|
p_params = jax_utils.replicate(params)
|
|
|
|
rng = jax.random.split(rng)[0]
|
|
|
|
sample_rng = jax.random.split(rng, jax.device_count())
|
|
|
|
images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images
|
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
|
|
|
images = pipeline.numpy_to_pil(np.array(images))
|
|
|
|
|
|
|
|
for i, image in enumerate(images):
|
|
|
|
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
|
|
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
|
|
|
image.save(image_filename)
|
|
|
|
|
|
|
|
del pipeline
|
|
|
|
|
|
|
|
# Handle the repository creation
|
|
|
|
if jax.process_index() == 0:
|
|
|
|
if args.push_to_hub:
|
|
|
|
if args.hub_model_id is None:
|
|
|
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
|
|
|
else:
|
|
|
|
repo_name = args.hub_model_id
|
|
|
|
repo = Repository(args.output_dir, clone_from=repo_name)
|
|
|
|
|
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
|
|
|
if "step_*" not in gitignore:
|
|
|
|
gitignore.write("step_*\n")
|
|
|
|
if "epoch_*" not in gitignore:
|
|
|
|
gitignore.write("epoch_*\n")
|
|
|
|
elif args.output_dir is not None:
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
|
|
|
|
# Load the tokenizer and add the placeholder token as a additional special token
|
|
|
|
if args.tokenizer_name:
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
|
|
|
elif args.pretrained_model_name_or_path:
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
|
|
|
|
|
|
|
|
train_dataset = DreamBoothDataset(
|
|
|
|
instance_data_root=args.instance_data_dir,
|
|
|
|
instance_prompt=args.instance_prompt,
|
|
|
|
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
|
|
|
class_prompt=args.class_prompt,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
size=args.resolution,
|
|
|
|
center_crop=args.center_crop,
|
|
|
|
)
|
|
|
|
|
|
|
|
def collate_fn(examples):
|
|
|
|
input_ids = [example["instance_prompt_ids"] for example in examples]
|
|
|
|
pixel_values = [example["instance_images"] for example in examples]
|
|
|
|
|
|
|
|
# Concat class and instance examples for prior preservation.
|
|
|
|
# We do this to avoid doing two forward passes.
|
|
|
|
if args.with_prior_preservation:
|
|
|
|
input_ids += [example["class_prompt_ids"] for example in examples]
|
|
|
|
pixel_values += [example["class_images"] for example in examples]
|
|
|
|
|
|
|
|
pixel_values = torch.stack(pixel_values)
|
|
|
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
|
|
|
|
|
|
|
input_ids = tokenizer.pad(
|
|
|
|
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
|
|
|
).input_ids
|
|
|
|
|
|
|
|
batch = {
|
|
|
|
"input_ids": input_ids,
|
|
|
|
"pixel_values": pixel_values,
|
|
|
|
}
|
|
|
|
batch = {k: v.numpy() for k, v in batch.items()}
|
|
|
|
return batch
|
|
|
|
|
|
|
|
total_train_batch_size = args.train_batch_size * jax.local_device_count()
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
|
|
train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True
|
|
|
|
)
|
|
|
|
|
|
|
|
weight_dtype = jnp.float32
|
|
|
|
if args.mixed_precision == "fp16":
|
|
|
|
weight_dtype = jnp.float16
|
|
|
|
elif args.mixed_precision == "bf16":
|
|
|
|
weight_dtype = jnp.bfloat16
|
|
|
|
|
|
|
|
# Load models and create wrapper for stable diffusion
|
|
|
|
text_encoder = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", dtype=weight_dtype)
|
|
|
|
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
|
|
|
args.pretrained_model_name_or_path, subfolder="vae", dtype=weight_dtype
|
|
|
|
)
|
|
|
|
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
|
|
|
args.pretrained_model_name_or_path, subfolder="unet", dtype=weight_dtype
|
|
|
|
)
|
|
|
|
|
|
|
|
# Optimization
|
|
|
|
if args.scale_lr:
|
|
|
|
args.learning_rate = args.learning_rate * total_train_batch_size
|
|
|
|
|
|
|
|
constant_scheduler = optax.constant_schedule(args.learning_rate)
|
|
|
|
|
|
|
|
adamw = optax.adamw(
|
|
|
|
learning_rate=constant_scheduler,
|
|
|
|
b1=args.adam_beta1,
|
|
|
|
b2=args.adam_beta2,
|
|
|
|
eps=args.adam_epsilon,
|
|
|
|
weight_decay=args.adam_weight_decay,
|
|
|
|
)
|
|
|
|
|
|
|
|
optimizer = optax.chain(
|
|
|
|
optax.clip_by_global_norm(args.max_grad_norm),
|
|
|
|
adamw,
|
|
|
|
)
|
|
|
|
|
|
|
|
unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
|
|
|
|
text_encoder_state = train_state.TrainState.create(
|
|
|
|
apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer
|
|
|
|
)
|
|
|
|
|
|
|
|
noise_scheduler = FlaxDDPMScheduler(
|
|
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
|
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize our training
|
|
|
|
train_rngs = jax.random.split(rng, jax.local_device_count())
|
|
|
|
|
|
|
|
def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng):
|
|
|
|
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
|
|
|
|
|
|
|
|
if args.train_text_encoder:
|
|
|
|
params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params}
|
|
|
|
else:
|
|
|
|
params = {"unet": unet_state.params}
|
|
|
|
|
|
|
|
def compute_loss(params):
|
|
|
|
# Convert images to latent space
|
|
|
|
vae_outputs = vae.apply(
|
|
|
|
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
|
|
|
|
)
|
|
|
|
latents = vae_outputs.latent_dist.sample(sample_rng)
|
|
|
|
# (NHWC) -> (NCHW)
|
|
|
|
latents = jnp.transpose(latents, (0, 3, 1, 2))
|
|
|
|
latents = latents * 0.18215
|
|
|
|
|
|
|
|
# Sample noise that we'll add to the latents
|
|
|
|
noise_rng, timestep_rng = jax.random.split(sample_rng)
|
|
|
|
noise = jax.random.normal(noise_rng, latents.shape)
|
|
|
|
# Sample a random timestep for each image
|
|
|
|
bsz = latents.shape[0]
|
|
|
|
timesteps = jax.random.randint(
|
|
|
|
timestep_rng,
|
|
|
|
(bsz,),
|
|
|
|
0,
|
|
|
|
noise_scheduler.config.num_train_timesteps,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
|
|
# (this is the forward diffusion process)
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
|
|
|
|
|
|
# Get the text embedding for conditioning
|
|
|
|
if args.train_text_encoder:
|
|
|
|
encoder_hidden_states = text_encoder_state.apply_fn(
|
|
|
|
batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True
|
|
|
|
)[0]
|
|
|
|
else:
|
|
|
|
encoder_hidden_states = text_encoder(
|
|
|
|
batch["input_ids"], params=text_encoder_state.params, train=False
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
# Predict the noise residual
|
|
|
|
unet_outputs = unet.apply(
|
|
|
|
{"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True
|
|
|
|
)
|
|
|
|
noise_pred = unet_outputs.sample
|
|
|
|
|
|
|
|
if args.with_prior_preservation:
|
|
|
|
# Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
|
|
|
|
noise_pred, noise_pred_prior = jnp.split(noise_pred, 2, axis=0)
|
|
|
|
noise, noise_prior = jnp.split(noise, 2, axis=0)
|
|
|
|
|
|
|
|
# Compute instance loss
|
|
|
|
loss = (noise - noise_pred) ** 2
|
|
|
|
loss = loss.mean()
|
|
|
|
|
|
|
|
# Compute prior loss
|
|
|
|
prior_loss = (noise_prior - noise_pred_prior) ** 2
|
|
|
|
prior_loss = prior_loss.mean()
|
|
|
|
|
|
|
|
# Add the prior loss to the instance loss.
|
|
|
|
loss = loss + args.prior_loss_weight * prior_loss
|
|
|
|
else:
|
|
|
|
loss = (noise - noise_pred) ** 2
|
|
|
|
loss = loss.mean()
|
|
|
|
|
|
|
|
return loss
|
|
|
|
|
|
|
|
grad_fn = jax.value_and_grad(compute_loss)
|
|
|
|
loss, grad = grad_fn(params)
|
|
|
|
grad = jax.lax.pmean(grad, "batch")
|
|
|
|
|
|
|
|
new_unet_state = unet_state.apply_gradients(grads=grad["unet"])
|
|
|
|
if args.train_text_encoder:
|
|
|
|
new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"])
|
|
|
|
else:
|
|
|
|
new_text_encoder_state = text_encoder_state
|
|
|
|
|
|
|
|
metrics = {"loss": loss}
|
|
|
|
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
|
|
|
|
|
|
|
return new_unet_state, new_text_encoder_state, metrics, new_train_rng
|
|
|
|
|
|
|
|
# Create parallel version of the train step
|
|
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1))
|
|
|
|
|
|
|
|
# Replicate the train state on each device
|
|
|
|
unet_state = jax_utils.replicate(unet_state)
|
|
|
|
text_encoder_state = jax_utils.replicate(text_encoder_state)
|
|
|
|
vae_params = jax_utils.replicate(vae_params)
|
|
|
|
|
|
|
|
# Train!
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
|
|
|
|
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
|
|
if args.max_train_steps is None:
|
|
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
|
|
|
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
|
|
|
|
logger.info("***** Running training *****")
|
|
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
|
|
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
|
|
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
|
|
|
|
|
|
global_step = 0
|
|
|
|
|
|
|
|
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0)
|
|
|
|
for epoch in epochs:
|
|
|
|
# ======================== Training ================================
|
|
|
|
|
|
|
|
train_metrics = []
|
|
|
|
|
|
|
|
steps_per_epoch = len(train_dataset) // total_train_batch_size
|
|
|
|
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
|
|
|
|
# train
|
|
|
|
for batch in train_dataloader:
|
|
|
|
batch = shard(batch)
|
|
|
|
unet_state, text_encoder_state, train_metric, train_rngs = p_train_step(
|
|
|
|
unet_state, text_encoder_state, vae_params, batch, train_rngs
|
|
|
|
)
|
|
|
|
train_metrics.append(train_metric)
|
|
|
|
|
|
|
|
train_step_progress_bar.update(1)
|
|
|
|
|
|
|
|
global_step += 1
|
|
|
|
if global_step >= args.max_train_steps:
|
|
|
|
break
|
|
|
|
|
|
|
|
train_metric = jax_utils.unreplicate(train_metric)
|
|
|
|
|
|
|
|
train_step_progress_bar.close()
|
|
|
|
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
|
|
|
|
|
|
|
|
# Create the pipeline using using the trained modules and save it.
|
|
|
|
if jax.process_index() == 0:
|
|
|
|
scheduler = FlaxPNDMScheduler(
|
|
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
|
|
|
|
)
|
|
|
|
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
|
|
|
|
"CompVis/stable-diffusion-safety-checker", from_pt=True
|
|
|
|
)
|
|
|
|
pipeline = FlaxStableDiffusionPipeline(
|
|
|
|
text_encoder=text_encoder,
|
|
|
|
vae=vae,
|
|
|
|
unet=unet,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
scheduler=scheduler,
|
|
|
|
safety_checker=safety_checker,
|
|
|
|
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
|
|
|
|
)
|
|
|
|
|
|
|
|
pipeline.save_pretrained(
|
|
|
|
args.output_dir,
|
|
|
|
params={
|
|
|
|
"text_encoder": get_params_to_save(text_encoder_state.params),
|
|
|
|
"vae": get_params_to_save(vae_params),
|
|
|
|
"unet": get_params_to_save(unet_state.params),
|
|
|
|
"safety_checker": safety_checker.params,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
|
|
|
|
if args.push_to_hub:
|
|
|
|
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|