2022-10-24 08:34:01 -06:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel
|
2022-11-09 15:00:23 -07:00
|
|
|
from diffusers.utils.testing_utils import require_torch_gpu, slow, torch_device
|
2022-10-24 08:34:01 -06:00
|
|
|
|
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
|
|
|
|
|
|
class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
2022-12-06 10:35:30 -07:00
|
|
|
pipeline_class = DDIMPipeline
|
2022-12-07 06:09:51 -07:00
|
|
|
test_cpu_offload = False
|
2022-12-06 10:35:30 -07:00
|
|
|
|
|
|
|
def get_dummy_components(self):
|
2022-10-24 08:34:01 -06:00
|
|
|
torch.manual_seed(0)
|
2022-12-06 10:35:30 -07:00
|
|
|
unet = UNet2DModel(
|
2022-10-24 08:34:01 -06:00
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
|
|
)
|
2022-12-06 10:35:30 -07:00
|
|
|
scheduler = DDIMScheduler()
|
|
|
|
components = {"unet": unet, "scheduler": scheduler}
|
|
|
|
return components
|
|
|
|
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
|
|
if str(device).startswith("mps"):
|
|
|
|
generator = torch.manual_seed(seed)
|
|
|
|
else:
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
inputs = {
|
2022-12-13 04:50:15 -07:00
|
|
|
"batch_size": 1,
|
2022-12-06 10:35:30 -07:00
|
|
|
"generator": generator,
|
|
|
|
"num_inference_steps": 2,
|
|
|
|
"output_type": "numpy",
|
|
|
|
}
|
|
|
|
return inputs
|
2022-10-24 08:34:01 -06:00
|
|
|
|
|
|
|
def test_inference(self):
|
2022-11-09 15:00:23 -07:00
|
|
|
device = "cpu"
|
2022-10-24 08:34:01 -06:00
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
|
|
pipe.to(device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
2022-10-24 08:34:01 -06:00
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = pipe(**inputs).images
|
2022-10-24 08:34:01 -06:00
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
self.assertEqual(image.shape, (1, 32, 32, 3))
|
2022-10-24 08:34:01 -06:00
|
|
|
expected_slice = np.array(
|
|
|
|
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
|
|
|
|
)
|
2022-12-06 10:35:30 -07:00
|
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
|
|
|
self.assertLessEqual(max_diff, 1e-3)
|
2022-10-24 08:34:01 -06:00
|
|
|
|
|
|
|
|
|
|
|
@slow
|
2022-11-09 15:00:23 -07:00
|
|
|
@require_torch_gpu
|
2022-10-24 08:34:01 -06:00
|
|
|
class DDIMPipelineIntegrationTests(unittest.TestCase):
|
|
|
|
def test_inference_ema_bedroom(self):
|
|
|
|
model_id = "google/ddpm-ema-bedroom-256"
|
|
|
|
|
2022-11-03 10:25:57 -06:00
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
2022-11-15 10:15:13 -07:00
|
|
|
scheduler = DDIMScheduler.from_pretrained(model_id)
|
2022-10-24 08:34:01 -06:00
|
|
|
|
|
|
|
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
|
|
|
|
ddpm.to(torch_device)
|
|
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-11-09 15:00:23 -07:00
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
2022-10-24 08:34:01 -06:00
|
|
|
image = ddpm(generator=generator, output_type="numpy").images
|
|
|
|
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
2022-11-09 15:00:23 -07:00
|
|
|
expected_slice = np.array([0.1546, 0.1561, 0.1595, 0.1564, 0.1569, 0.1585, 0.1554, 0.1550, 0.1575])
|
2022-10-24 08:34:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_inference_cifar10(self):
|
|
|
|
model_id = "google/ddpm-cifar10-32"
|
|
|
|
|
2022-11-03 10:25:57 -06:00
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
2022-10-24 08:34:01 -06:00
|
|
|
scheduler = DDIMScheduler()
|
|
|
|
|
|
|
|
ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
|
|
|
|
ddim.to(torch_device)
|
|
|
|
ddim.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-11-09 15:00:23 -07:00
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
2022-10-24 08:34:01 -06:00
|
|
|
image = ddim(generator=generator, eta=0.0, output_type="numpy").images
|
|
|
|
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
2022-11-09 15:00:23 -07:00
|
|
|
expected_slice = np.array([0.2060, 0.2042, 0.2022, 0.2193, 0.2146, 0.2110, 0.2471, 0.2446, 0.2388])
|
2022-10-24 08:34:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|