diffusers/tests/test_scheduler.py

330 lines
11 KiB
Python
Raw Normal View History

2022-06-12 11:07:56 -06:00
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2022-06-12 11:59:39 -06:00
import tempfile
2022-06-12 15:20:39 -06:00
import unittest
2022-06-12 11:07:56 -06:00
2022-06-12 15:20:39 -06:00
import numpy as np
import torch
2022-06-13 02:39:53 -06:00
from diffusers import DDIMScheduler, DDPMScheduler
2022-06-12 11:07:56 -06:00
torch.backends.cuda.matmul.allow_tf32 = False
class SchedulerCommonTest(unittest.TestCase):
2022-06-12 13:56:13 -06:00
scheduler_classes = ()
forward_default_kwargs = ()
2022-06-12 11:07:56 -06:00
@property
def dummy_image(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
image = np.random.rand(batch_size, num_channels, height, width)
2022-06-12 15:20:39 -06:00
return image
2022-06-12 13:56:13 -06:00
@property
def dummy_image_deter(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
num_elems = batch_size * num_channels * height * width
image = np.arange(num_elems)
image = image.reshape(num_channels, height, width, batch_size)
image = image / num_elems
image = image.transpose(3, 0, 1, 2)
2022-06-12 15:20:39 -06:00
return image
2022-06-12 11:07:56 -06:00
def get_scheduler_config(self):
raise NotImplementedError
def dummy_model(self):
2022-06-12 13:56:13 -06:00
def model(image, t, *args):
return image * t / (t + 1)
2022-06-12 11:07:56 -06:00
return model
2022-06-12 13:56:13 -06:00
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
scheduler_class = self.scheduler_classes[0]
image = self.dummy_image
residual = 0.1 * image
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
output = scheduler.step(residual, image, time_step, **kwargs)
new_output = new_scheduler.step(residual, image, time_step, **kwargs)
2022-06-12 15:20:39 -06:00
assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
2022-06-12 13:56:13 -06:00
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
for scheduler_class in self.scheduler_classes:
scheduler_class = self.scheduler_classes[0]
image = self.dummy_image
residual = 0.1 * image
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
output = scheduler.step(residual, image, time_step, **kwargs)
new_output = new_scheduler.step(residual, image, time_step, **kwargs)
2022-06-12 15:20:39 -06:00
assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
2022-06-12 13:56:13 -06:00
2022-06-12 11:07:56 -06:00
def test_from_pretrained_save_pretrained(self):
2022-06-12 13:56:13 -06:00
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
image = self.dummy_image
residual = 0.1 * image
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
output = scheduler.step(residual, image, 1, **kwargs)
new_output = new_scheduler.step(residual, image, 1, **kwargs)
2022-06-12 15:20:39 -06:00
assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
2022-06-12 13:56:13 -06:00
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
image = self.dummy_image
residual = 0.1 * image
output_0 = scheduler.step(residual, image, 0, **kwargs)
output_1 = scheduler.step(residual, image, 1, **kwargs)
self.assertEqual(output_0.shape, image.shape)
self.assertEqual(output_0.shape, output_1.shape)
2022-06-12 15:20:39 -06:00
def test_pytorch_equal_numpy(self):
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
image = self.dummy_image
residual = 0.1 * image
image_pt = torch.tensor(image)
residual_pt = 0.1 * image_pt
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)
output = scheduler.step(residual, image, 1, **kwargs)
output_pt = scheduler_pt.step(residual_pt, image_pt, 1, **kwargs)
assert np.sum(np.abs(output - output_pt.numpy())) < 1e-5, "Scheduler outputs are not identical"
2022-06-12 13:56:13 -06:00
class DDPMSchedulerTest(SchedulerCommonTest):
2022-06-13 02:39:53 -06:00
scheduler_classes = (DDPMScheduler,)
2022-06-12 13:56:13 -06:00
def get_scheduler_config(self, **kwargs):
config = {
"timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
2022-06-17 04:11:40 -06:00
"clip_sample": True,
2022-06-12 13:56:13 -06:00
}
config.update(**kwargs)
return config
2022-06-12 11:12:01 -06:00
2022-06-12 13:56:13 -06:00
def test_timesteps(self):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_variance_type(self):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=variance)
def test_clip_image(self):
2022-06-17 04:11:40 -06:00
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=clip_sample)
2022-06-12 13:56:13 -06:00
def test_time_indices(self):
for t in [0, 500, 999]:
self.check_over_forward(time_step=t)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
2022-06-12 15:20:39 -06:00
assert np.sum(np.abs(scheduler.get_variance(0) - 0.0)) < 1e-5
assert np.sum(np.abs(scheduler.get_variance(487) - 0.00979)) < 1e-5
assert np.sum(np.abs(scheduler.get_variance(999) - 0.02)) < 1e-5
2022-06-12 13:56:13 -06:00
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
2022-06-12 11:07:56 -06:00
scheduler_config = self.get_scheduler_config()
2022-06-12 13:56:13 -06:00
scheduler = scheduler_class(**scheduler_config)
num_trained_timesteps = len(scheduler)
model = self.dummy_model()
image = self.dummy_image_deter
for t in reversed(range(num_trained_timesteps)):
# 1. predict noise residual
residual = model(image, t)
# 2. predict previous mean of image x_t-1
pred_prev_image = scheduler.step(residual, image, t)
if t > 0:
noise = self.dummy_image_deter
2022-06-12 15:20:39 -06:00
variance = scheduler.get_variance(t) ** (0.5) * noise
2022-06-12 13:56:13 -06:00
image = pred_prev_image + variance
2022-06-12 15:20:39 -06:00
result_sum = np.sum(np.abs(image))
result_mean = np.mean(np.abs(image))
2022-06-12 13:56:13 -06:00
assert result_sum.item() - 732.9947 < 1e-3
assert result_mean.item() - 0.9544 < 1e-3
2022-06-12 11:07:56 -06:00
2022-06-12 11:12:01 -06:00
2022-06-12 13:56:13 -06:00
class DDIMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DDIMScheduler,)
forward_default_kwargs = (("num_inference_steps", 50), ("eta", 0.0))
2022-06-12 11:12:01 -06:00
2022-06-12 13:56:13 -06:00
def get_scheduler_config(self, **kwargs):
config = {
"timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
2022-06-17 04:11:40 -06:00
"clip_sample": True,
2022-06-12 13:56:13 -06:00
}
2022-06-12 11:59:39 -06:00
2022-06-12 13:56:13 -06:00
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_clip_image(self):
2022-06-17 04:11:40 -06:00
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=clip_sample)
2022-06-12 13:56:13 -06:00
def test_time_indices(self):
for t in [1, 10, 49]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
def test_eta(self):
for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=t, eta=eta)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
2022-06-12 11:59:39 -06:00
scheduler_config = self.get_scheduler_config()
2022-06-12 13:56:13 -06:00
scheduler = scheduler_class(**scheduler_config)
2022-06-12 15:20:39 -06:00
assert np.sum(np.abs(scheduler.get_variance(0, 50) - 0.0)) < 1e-5
assert np.sum(np.abs(scheduler.get_variance(21, 50) - 0.14771)) < 1e-5
assert np.sum(np.abs(scheduler.get_variance(49, 50) - 0.32460)) < 1e-5
assert np.sum(np.abs(scheduler.get_variance(0, 1000) - 0.0)) < 1e-5
assert np.sum(np.abs(scheduler.get_variance(487, 1000) - 0.00979)) < 1e-5
assert np.sum(np.abs(scheduler.get_variance(999, 1000) - 0.02)) < 1e-5
2022-06-12 13:56:13 -06:00
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps, eta = 10, 0.1
num_trained_timesteps = len(scheduler)
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
model = self.dummy_model()
image = self.dummy_image_deter
for t in reversed(range(num_inference_steps)):
residual = model(image, inference_step_times[t])
pred_prev_image = scheduler.step(residual, image, t, num_inference_steps, eta)
variance = 0
if eta > 0:
noise = self.dummy_image_deter
2022-06-12 15:20:39 -06:00
variance = scheduler.get_variance(t, num_inference_steps) ** (0.5) * eta * noise
2022-06-12 11:59:39 -06:00
2022-06-12 13:56:13 -06:00
image = pred_prev_image + variance
2022-06-12 11:59:39 -06:00
2022-06-12 15:20:39 -06:00
result_sum = np.sum(np.abs(image))
result_mean = np.mean(np.abs(image))
2022-06-12 11:59:39 -06:00
2022-06-12 13:56:13 -06:00
assert result_sum.item() - 270.6214 < 1e-3
assert result_mean.item() - 0.3524 < 1e-3