348 lines
12 KiB
Python
348 lines
12 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 HuggingFace Inc.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import gc
|
||
|
import random
|
||
|
import unittest
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
|
||
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
|
||
|
RobertaSeriesConfig,
|
||
|
RobertaSeriesModelWithTransformation,
|
||
|
)
|
||
|
from diffusers.utils import floats_tensor, slow, torch_device
|
||
|
from diffusers.utils.testing_utils import require_torch_gpu
|
||
|
from transformers import XLMRobertaTokenizer
|
||
|
|
||
|
from ...test_pipelines_common import PipelineTesterMixin
|
||
|
|
||
|
|
||
|
torch.backends.cuda.matmul.allow_tf32 = False
|
||
|
|
||
|
|
||
|
class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||
|
def tearDown(self):
|
||
|
# clean up the VRAM after each test
|
||
|
super().tearDown()
|
||
|
gc.collect()
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
@property
|
||
|
def dummy_image(self):
|
||
|
batch_size = 1
|
||
|
num_channels = 3
|
||
|
sizes = (32, 32)
|
||
|
|
||
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
||
|
return image
|
||
|
|
||
|
@property
|
||
|
def dummy_cond_unet(self):
|
||
|
torch.manual_seed(0)
|
||
|
model = UNet2DConditionModel(
|
||
|
block_out_channels=(32, 64),
|
||
|
layers_per_block=2,
|
||
|
sample_size=32,
|
||
|
in_channels=4,
|
||
|
out_channels=4,
|
||
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
||
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
||
|
cross_attention_dim=32,
|
||
|
)
|
||
|
return model
|
||
|
|
||
|
@property
|
||
|
def dummy_cond_unet_inpaint(self):
|
||
|
torch.manual_seed(0)
|
||
|
model = UNet2DConditionModel(
|
||
|
block_out_channels=(32, 64),
|
||
|
layers_per_block=2,
|
||
|
sample_size=32,
|
||
|
in_channels=9,
|
||
|
out_channels=4,
|
||
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
||
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
||
|
cross_attention_dim=32,
|
||
|
)
|
||
|
return model
|
||
|
|
||
|
@property
|
||
|
def dummy_vae(self):
|
||
|
torch.manual_seed(0)
|
||
|
model = AutoencoderKL(
|
||
|
block_out_channels=[32, 64],
|
||
|
in_channels=3,
|
||
|
out_channels=3,
|
||
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||
|
latent_channels=4,
|
||
|
)
|
||
|
return model
|
||
|
|
||
|
@property
|
||
|
def dummy_text_encoder(self):
|
||
|
torch.manual_seed(0)
|
||
|
config = RobertaSeriesConfig(
|
||
|
hidden_size=32,
|
||
|
project_dim=32,
|
||
|
intermediate_size=37,
|
||
|
layer_norm_eps=1e-05,
|
||
|
num_attention_heads=4,
|
||
|
num_hidden_layers=5,
|
||
|
vocab_size=5002,
|
||
|
)
|
||
|
return RobertaSeriesModelWithTransformation(config)
|
||
|
|
||
|
@property
|
||
|
def dummy_extractor(self):
|
||
|
def extract(*args, **kwargs):
|
||
|
class Out:
|
||
|
def __init__(self):
|
||
|
self.pixel_values = torch.ones([0])
|
||
|
|
||
|
def to(self, device):
|
||
|
self.pixel_values.to(device)
|
||
|
return self
|
||
|
|
||
|
return Out()
|
||
|
|
||
|
return extract
|
||
|
|
||
|
def test_alt_diffusion_ddim(self):
|
||
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||
|
unet = self.dummy_cond_unet
|
||
|
scheduler = DDIMScheduler(
|
||
|
beta_start=0.00085,
|
||
|
beta_end=0.012,
|
||
|
beta_schedule="scaled_linear",
|
||
|
clip_sample=False,
|
||
|
set_alpha_to_one=False,
|
||
|
)
|
||
|
|
||
|
vae = self.dummy_vae
|
||
|
bert = self.dummy_text_encoder
|
||
|
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
|
||
|
tokenizer.model_max_length = 77
|
||
|
|
||
|
# make sure here that pndm scheduler skips prk
|
||
|
alt_pipe = AltDiffusionPipeline(
|
||
|
unet=unet,
|
||
|
scheduler=scheduler,
|
||
|
vae=vae,
|
||
|
text_encoder=bert,
|
||
|
tokenizer=tokenizer,
|
||
|
safety_checker=None,
|
||
|
feature_extractor=self.dummy_extractor,
|
||
|
)
|
||
|
alt_pipe = alt_pipe.to(device)
|
||
|
alt_pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
prompt = "A photo of an astronaut"
|
||
|
|
||
|
generator = torch.Generator(device=device).manual_seed(0)
|
||
|
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
||
|
image = output.images
|
||
|
|
||
|
generator = torch.Generator(device=device).manual_seed(0)
|
||
|
image_from_tuple = alt_pipe(
|
||
|
[prompt],
|
||
|
generator=generator,
|
||
|
guidance_scale=6.0,
|
||
|
num_inference_steps=2,
|
||
|
output_type="np",
|
||
|
return_dict=False,
|
||
|
)[0]
|
||
|
|
||
|
image_slice = image[0, -3:, -3:, -1]
|
||
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
||
|
|
||
|
assert image.shape == (1, 128, 128, 3)
|
||
|
expected_slice = np.array(
|
||
|
[0.49249017, 0.46064827, 0.4790093, 0.50883967, 0.4811985, 0.51540506, 0.5084924, 0.4860553, 0.47318557]
|
||
|
)
|
||
|
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
|
||
|
def test_alt_diffusion_pndm(self):
|
||
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||
|
unet = self.dummy_cond_unet
|
||
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
||
|
vae = self.dummy_vae
|
||
|
bert = self.dummy_text_encoder
|
||
|
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
|
||
|
tokenizer.model_max_length = 77
|
||
|
|
||
|
# make sure here that pndm scheduler skips prk
|
||
|
alt_pipe = AltDiffusionPipeline(
|
||
|
unet=unet,
|
||
|
scheduler=scheduler,
|
||
|
vae=vae,
|
||
|
text_encoder=bert,
|
||
|
tokenizer=tokenizer,
|
||
|
safety_checker=None,
|
||
|
feature_extractor=self.dummy_extractor,
|
||
|
)
|
||
|
alt_pipe = alt_pipe.to(device)
|
||
|
alt_pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
prompt = "A painting of a squirrel eating a burger"
|
||
|
generator = torch.Generator(device=device).manual_seed(0)
|
||
|
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
||
|
|
||
|
image = output.images
|
||
|
|
||
|
generator = torch.Generator(device=device).manual_seed(0)
|
||
|
image_from_tuple = alt_pipe(
|
||
|
[prompt],
|
||
|
generator=generator,
|
||
|
guidance_scale=6.0,
|
||
|
num_inference_steps=2,
|
||
|
output_type="np",
|
||
|
return_dict=False,
|
||
|
)[0]
|
||
|
|
||
|
image_slice = image[0, -3:, -3:, -1]
|
||
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
||
|
|
||
|
assert image.shape == (1, 128, 128, 3)
|
||
|
expected_slice = np.array(
|
||
|
[0.4786532, 0.45791715, 0.47507674, 0.50763345, 0.48375353, 0.515062, 0.51244247, 0.48673993, 0.47105807]
|
||
|
)
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
|
||
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
|
||
|
def test_alt_diffusion_fp16(self):
|
||
|
"""Test that stable diffusion works with fp16"""
|
||
|
unet = self.dummy_cond_unet
|
||
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
||
|
vae = self.dummy_vae
|
||
|
bert = self.dummy_text_encoder
|
||
|
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
|
||
|
tokenizer.model_max_length = 77
|
||
|
|
||
|
# put models in fp16
|
||
|
unet = unet.half()
|
||
|
vae = vae.half()
|
||
|
bert = bert.half()
|
||
|
|
||
|
# make sure here that pndm scheduler skips prk
|
||
|
alt_pipe = AltDiffusionPipeline(
|
||
|
unet=unet,
|
||
|
scheduler=scheduler,
|
||
|
vae=vae,
|
||
|
text_encoder=bert,
|
||
|
tokenizer=tokenizer,
|
||
|
safety_checker=None,
|
||
|
feature_extractor=self.dummy_extractor,
|
||
|
)
|
||
|
alt_pipe = alt_pipe.to(torch_device)
|
||
|
alt_pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
prompt = "A painting of a squirrel eating a burger"
|
||
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||
|
image = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
|
||
|
|
||
|
assert image.shape == (1, 128, 128, 3)
|
||
|
|
||
|
|
||
|
@slow
|
||
|
@require_torch_gpu
|
||
|
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
|
||
|
def tearDown(self):
|
||
|
# clean up the VRAM after each test
|
||
|
super().tearDown()
|
||
|
gc.collect()
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
def test_alt_diffusion(self):
|
||
|
# make sure here that pndm scheduler skips prk
|
||
|
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
|
||
|
alt_pipe = alt_pipe.to(torch_device)
|
||
|
alt_pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
prompt = "A painting of a squirrel eating a burger"
|
||
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||
|
with torch.autocast("cuda"):
|
||
|
output = alt_pipe(
|
||
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
|
||
|
)
|
||
|
|
||
|
image = output.images
|
||
|
|
||
|
image_slice = image[0, -3:, -3:, -1]
|
||
|
|
||
|
assert image.shape == (1, 512, 512, 3)
|
||
|
expected_slice = np.array(
|
||
|
[0.8720703, 0.87109375, 0.87402344, 0.87109375, 0.8779297, 0.8925781, 0.8823242, 0.8808594, 0.8613281]
|
||
|
)
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
|
||
|
def test_alt_diffusion_fast_ddim(self):
|
||
|
scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")
|
||
|
|
||
|
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
|
||
|
alt_pipe = alt_pipe.to(torch_device)
|
||
|
alt_pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
prompt = "A painting of a squirrel eating a burger"
|
||
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||
|
|
||
|
with torch.autocast("cuda"):
|
||
|
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
|
||
|
image = output.images
|
||
|
|
||
|
image_slice = image[0, -3:, -3:, -1]
|
||
|
|
||
|
assert image.shape == (1, 512, 512, 3)
|
||
|
expected_slice = np.array(
|
||
|
[0.9267578, 0.9301758, 0.9013672, 0.9345703, 0.92578125, 0.94433594, 0.9423828, 0.9423828, 0.9160156]
|
||
|
)
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
|
||
|
def test_alt_diffusion_text2img_pipeline_fp16(self):
|
||
|
torch.cuda.reset_peak_memory_stats()
|
||
|
model_id = "BAAI/AltDiffusion"
|
||
|
pipe = AltDiffusionPipeline.from_pretrained(
|
||
|
model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
|
||
|
)
|
||
|
pipe = pipe.to(torch_device)
|
||
|
pipe.set_progress_bar_config(disable=None)
|
||
|
|
||
|
prompt = "a photograph of an astronaut riding a horse"
|
||
|
|
||
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||
|
output_chunked = pipe(
|
||
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
||
|
)
|
||
|
image_chunked = output_chunked.images
|
||
|
|
||
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||
|
with torch.autocast(torch_device):
|
||
|
output = pipe(
|
||
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
||
|
)
|
||
|
image = output.images
|
||
|
|
||
|
# Make sure results are close enough
|
||
|
diff = np.abs(image_chunked.flatten() - image.flatten())
|
||
|
# They ARE different since ops are not run always at the same precision
|
||
|
# however, they should be extremely close.
|
||
|
assert diff.mean() < 2e-2
|