2022-10-21 04:49:52 -06:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import gc
|
|
|
|
import random
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from diffusers import (
|
|
|
|
AutoencoderKL,
|
|
|
|
PNDMScheduler,
|
|
|
|
StableDiffusionInpaintPipeline,
|
|
|
|
UNet2DConditionModel,
|
|
|
|
UNet2DModel,
|
|
|
|
VQModel,
|
|
|
|
)
|
|
|
|
from diffusers.utils import floats_tensor, load_image, slow, torch_device
|
2022-10-24 08:34:01 -06:00
|
|
|
from diffusers.utils.testing_utils import require_torch_gpu
|
2022-10-21 04:49:52 -06:00
|
|
|
from PIL import Image
|
|
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
|
2022-10-24 08:34:01 -06:00
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
|
|
|
2022-10-24 08:34:01 -06:00
|
|
|
class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
2022-10-21 04:49:52 -06:00
|
|
|
def tearDown(self):
|
|
|
|
# clean up the VRAM after each test
|
|
|
|
super().tearDown()
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_image(self):
|
|
|
|
batch_size = 1
|
|
|
|
num_channels = 3
|
|
|
|
sizes = (32, 32)
|
|
|
|
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
|
|
|
return image
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_uncond_unet(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = UNet2DModel(
|
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_cond_unet(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = UNet2DConditionModel(
|
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=4,
|
|
|
|
out_channels=4,
|
|
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
|
|
cross_attention_dim=32,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_cond_unet_inpaint(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = UNet2DConditionModel(
|
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=9,
|
|
|
|
out_channels=4,
|
|
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
|
|
cross_attention_dim=32,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_vq_model(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = VQModel(
|
|
|
|
block_out_channels=[32, 64],
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
|
|
latent_channels=3,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_vae(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = AutoencoderKL(
|
|
|
|
block_out_channels=[32, 64],
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
|
|
latent_channels=4,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_text_encoder(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
config = CLIPTextConfig(
|
|
|
|
bos_token_id=0,
|
|
|
|
eos_token_id=2,
|
|
|
|
hidden_size=32,
|
|
|
|
intermediate_size=37,
|
|
|
|
layer_norm_eps=1e-05,
|
|
|
|
num_attention_heads=4,
|
|
|
|
num_hidden_layers=5,
|
|
|
|
pad_token_id=1,
|
|
|
|
vocab_size=1000,
|
|
|
|
)
|
|
|
|
return CLIPTextModel(config)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_extractor(self):
|
|
|
|
def extract(*args, **kwargs):
|
|
|
|
class Out:
|
|
|
|
def __init__(self):
|
|
|
|
self.pixel_values = torch.ones([0])
|
|
|
|
|
|
|
|
def to(self, device):
|
|
|
|
self.pixel_values.to(device)
|
|
|
|
return self
|
|
|
|
|
|
|
|
return Out()
|
|
|
|
|
|
|
|
return extract
|
|
|
|
|
|
|
|
def test_stable_diffusion_inpaint(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
unet = self.dummy_cond_unet_inpaint
|
|
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
|
|
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((128, 128))
|
|
|
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
|
|
|
|
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
|
|
sd_pipe = StableDiffusionInpaintPipeline(
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=bert,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=None,
|
|
|
|
)
|
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
|
|
output = sd_pipe(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
|
|
|
image=init_image,
|
|
|
|
mask_image=mask_image,
|
|
|
|
)
|
|
|
|
|
|
|
|
image = output.images
|
|
|
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
|
|
image_from_tuple = sd_pipe(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
|
|
|
image=init_image,
|
|
|
|
mask_image=mask_image,
|
|
|
|
return_dict=False,
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 128, 128, 3)
|
|
|
|
expected_slice = np.array([0.5075, 0.4485, 0.4558, 0.5369, 0.5369, 0.5236, 0.5127, 0.4983, 0.4776])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
|
|
|
|
def test_stable_diffusion_inpaint_fp16(self):
|
|
|
|
"""Test that stable diffusion inpaint_legacy works with fp16"""
|
|
|
|
unet = self.dummy_cond_unet_inpaint
|
|
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
|
|
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((128, 128))
|
|
|
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
|
|
|
|
|
|
|
|
# put models in fp16
|
|
|
|
unet = unet.half()
|
|
|
|
vae = vae.half()
|
|
|
|
bert = bert.half()
|
|
|
|
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
|
|
sd_pipe = StableDiffusionInpaintPipeline(
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=bert,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=None,
|
|
|
|
)
|
|
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
image = sd_pipe(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
|
|
|
image=init_image,
|
|
|
|
mask_image=mask_image,
|
|
|
|
).images
|
|
|
|
|
|
|
|
assert image.shape == (1, 128, 128, 3)
|
|
|
|
|
|
|
|
|
|
|
|
@slow
|
2022-10-24 08:34:01 -06:00
|
|
|
@require_torch_gpu
|
|
|
|
class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
|
2022-10-21 04:49:52 -06:00
|
|
|
def tearDown(self):
|
|
|
|
# clean up the VRAM after each test
|
|
|
|
super().tearDown()
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
def test_stable_diffusion_inpaint_pipeline(self):
|
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/overture-creations-5sI6fQgYIuo.png"
|
|
|
|
)
|
|
|
|
mask_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
|
|
|
|
)
|
|
|
|
expected_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/yellow_cat_sitting_on_a_park_bench.png"
|
|
|
|
)
|
|
|
|
expected_image = np.array(expected_image, dtype=np.float32) / 255.0
|
|
|
|
|
|
|
|
model_id = "runwayml/stable-diffusion-inpainting"
|
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
|
|
model_id,
|
|
|
|
safety_checker=None,
|
2022-10-28 06:46:39 -06:00
|
|
|
device_map="auto",
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
output = pipe(
|
|
|
|
prompt=prompt,
|
|
|
|
image=init_image,
|
|
|
|
mask_image=mask_image,
|
|
|
|
generator=generator,
|
|
|
|
output_type="np",
|
|
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
assert np.abs(expected_image - image).max() < 1e-2
|
|
|
|
|
|
|
|
def test_stable_diffusion_inpaint_pipeline_fp16(self):
|
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/overture-creations-5sI6fQgYIuo.png"
|
|
|
|
)
|
|
|
|
mask_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
|
|
|
|
)
|
|
|
|
expected_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/yellow_cat_sitting_on_a_park_bench_fp16.png"
|
|
|
|
)
|
|
|
|
expected_image = np.array(expected_image, dtype=np.float32) / 255.0
|
|
|
|
|
|
|
|
model_id = "runwayml/stable-diffusion-inpainting"
|
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
|
|
model_id,
|
|
|
|
revision="fp16",
|
|
|
|
torch_dtype=torch.float16,
|
|
|
|
safety_checker=None,
|
2022-10-28 06:46:39 -06:00
|
|
|
device_map="auto",
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
output = pipe(
|
|
|
|
prompt=prompt,
|
|
|
|
image=init_image,
|
|
|
|
mask_image=mask_image,
|
|
|
|
generator=generator,
|
|
|
|
output_type="np",
|
|
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
|
|
|
|
assert image.shape == (512, 512, 3)
|
2022-10-31 03:13:37 -06:00
|
|
|
assert np.abs(expected_image - image).max() < 5e-1
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_inpaint_pipeline_pndm(self):
|
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/overture-creations-5sI6fQgYIuo.png"
|
|
|
|
)
|
|
|
|
mask_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
|
|
|
|
)
|
|
|
|
expected_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/in_paint/yellow_cat_sitting_on_a_park_bench_pndm.png"
|
|
|
|
)
|
|
|
|
expected_image = np.array(expected_image, dtype=np.float32) / 255.0
|
|
|
|
|
|
|
|
model_id = "runwayml/stable-diffusion-inpainting"
|
2022-10-31 10:26:30 -06:00
|
|
|
pndm = PNDMScheduler.from_config(model_id, subfolder="scheduler")
|
2022-10-28 06:46:39 -06:00
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
|
|
model_id, safety_checker=None, scheduler=pndm, device_map="auto"
|
|
|
|
)
|
2022-10-21 04:49:52 -06:00
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
output = pipe(
|
|
|
|
prompt=prompt,
|
|
|
|
image=init_image,
|
|
|
|
mask_image=mask_image,
|
|
|
|
generator=generator,
|
|
|
|
output_type="np",
|
|
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
assert np.abs(expected_image - image).max() < 1e-2
|