2022-06-01 16:42:08 -06:00
# Diffusers
2022-06-02 04:27:01 -06:00
## Definitions
2022-06-02 04:15:59 -06:00
2022-06-02 04:27:01 -06:00
**Models**: Single neural network that models p_θ(x_t-1|x_t) and is trained to “denoise” to image
*Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet*
![model_diff_1_50 ](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png )
2022-06-10 06:36:10 -06:00
**Schedulers**: Algorithm to compute previous image according to alpha, beta schedule and to sample noise. Should be used for both *training* and *inference* .
2022-06-07 09:01:19 -06:00
*Example: Gaussian DDPM, DDIM, PMLS, DEIN*
2022-06-02 04:27:01 -06:00
![sampling ](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png )
![training ](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png )
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP
*Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E*
![imagen ](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png )
2022-06-02 04:15:59 -06:00
2022-06-10 06:36:10 -06:00
## Quickstart
2022-06-10 06:37:58 -06:00
```
git clone https://github.com/huggingface/diffusers.git
cd diffusers & & pip install -e .
2022-06-10 06:38:53 -06:00
```
2022-06-10 06:37:58 -06:00
2022-06-10 06:36:10 -06:00
### 1. `diffusers` as a central modular diffusion and sampler library
2022-06-02 07:59:58 -06:00
2022-06-07 09:04:32 -06:00
`diffusers` is more modularized than `transformers` . The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
2022-06-10 06:32:42 -06:00
Both models and schedulers should be load- and saveable from the Hub.
2022-06-02 07:59:58 -06:00
2022-06-11 16:24:20 -06:00
#### **Example for [DDPM](https://arxiv.org/abs/2006.11239):**
2022-06-02 07:59:58 -06:00
```python
import torch
2022-06-13 02:39:53 -06:00
from diffusers import UNetModel, DDPMScheduler
2022-06-06 09:43:36 -06:00
import PIL
import numpy as np
2022-06-10 06:37:58 -06:00
import tqdm
2022-06-06 09:43:36 -06:00
2022-06-10 06:32:42 -06:00
generator = torch.manual_seed(0)
2022-06-07 07:13:39 -06:00
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
2022-06-06 09:43:36 -06:00
# 1. Load models
2022-06-13 02:39:53 -06:00
noise_scheduler = DDPMScheduler.from_config("fusing/ddpm-lsun-church", tensor_format="pt")
2022-06-10 06:50:57 -06:00
unet = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
2022-06-06 09:43:36 -06:00
# 2. Sample gaussian noise
2022-06-12 16:14:03 -06:00
image = torch.randn(
2022-06-12 16:15:39 -06:00
(1, unet.in_channels, unet.resolution, unet.resolution),
generator=generator,
2022-06-12 16:14:03 -06:00
)
image = image.to(torch_device)
2022-06-06 09:43:36 -06:00
2022-06-12 16:14:03 -06:00
# 3. Denoise
2022-06-10 06:32:42 -06:00
num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
2022-06-10 06:50:57 -06:00
# predict noise residual
with torch.no_grad():
2022-06-10 07:00:56 -06:00
residual = unet(image, t)
2022-06-06 09:43:36 -06:00
2022-06-10 06:50:57 -06:00
# predict previous mean of image x_t-1
2022-06-12 11:07:56 -06:00
pred_prev_image = noise_scheduler.step(residual, image, t)
2022-06-10 06:32:42 -06:00
2022-06-10 06:50:57 -06:00
# optionally sample variance
variance = 0
if t > 0:
2022-06-12 16:14:03 -06:00
noise = torch.randn(image.shape, generator=generator).to(image.device)
2022-06-10 07:00:56 -06:00
variance = noise_scheduler.get_variance(t).sqrt() * noise
2022-06-10 06:32:42 -06:00
2022-06-10 06:50:57 -06:00
# set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
2022-06-10 06:32:42 -06:00
# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# 6. save image
image_pil.save("test.png")
```
2022-06-11 16:24:20 -06:00
#### **Example for [DDIM](https://arxiv.org/abs/2010.02502):**
2022-06-10 06:32:42 -06:00
```python
import torch
from diffusers import UNetModel, DDIMScheduler
import PIL
import numpy as np
2022-06-10 06:37:58 -06:00
import tqdm
2022-06-10 06:32:42 -06:00
generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
# 1. Load models
2022-06-12 16:17:26 -06:00
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
2022-06-10 06:50:57 -06:00
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
2022-06-10 06:32:42 -06:00
# 2. Sample gaussian noise
2022-06-12 16:14:03 -06:00
image = torch.randn(
2022-06-12 16:15:39 -06:00
(1, unet.in_channels, unet.resolution, unet.resolution),
generator=generator,
2022-06-12 16:14:03 -06:00
)
image = image.to(torch_device)
2022-06-10 06:32:42 -06:00
# 3. Denoise
num_inference_steps = 50
eta = 0.0 # < - deterministic sampling
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
2022-06-10 06:50:57 -06:00
# 1. predict noise residual
orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
with torch.no_grad():
residual = unet(image, orig_t)
# 2. predict previous mean of image x_t-1
2022-06-12 11:07:56 -06:00
pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
2022-06-10 06:50:57 -06:00
# 3. optionally sample variance
variance = 0
if eta > 0:
2022-06-12 16:14:03 -06:00
noise = torch.randn(image.shape, generator=generator).to(image.device)
2022-06-10 06:50:57 -06:00
variance = noise_scheduler.get_variance(t).sqrt() * eta * noise
# 4. set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
2022-06-10 06:32:42 -06:00
# 5. process image to PIL
2022-06-06 09:43:36 -06:00
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
2022-06-06 10:19:02 -06:00
2022-06-10 06:32:42 -06:00
# 6. save image
2022-06-06 09:43:36 -06:00
image_pil.save("test.png")
2022-06-02 07:59:58 -06:00
```
2022-06-10 06:36:10 -06:00
### 2. `diffusers` as a collection of most important Diffusion systems (GLIDE, Dalle, ...)
2022-06-07 09:04:32 -06:00
`models` directory in repository hosts the complete code necessary for running a diffusion system as well as to train it. A `DiffusionPipeline` class allows to easily run the diffusion model in inference:
2022-06-02 07:59:58 -06:00
2022-06-11 16:24:20 -06:00
#### **Example image generation with DDPM**
2022-06-02 07:59:58 -06:00
```python
2022-06-07 07:51:48 -06:00
from diffusers import DiffusionPipeline
2022-06-06 10:19:02 -06:00
import PIL.Image
import numpy as np
2022-06-02 07:59:58 -06:00
2022-06-06 10:19:02 -06:00
# load model and scheduler
2022-06-07 07:51:48 -06:00
ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom")
2022-06-06 10:19:02 -06:00
# run pipeline in inference (sample random noise and denoise)
2022-06-02 07:59:58 -06:00
image = ddpm()
2022-06-06 10:19:02 -06:00
# process image to PIL
2022-06-06 10:17:15 -06:00
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
2022-06-06 10:19:02 -06:00
# save image
2022-06-06 10:17:15 -06:00
image_pil.save("test.png")
2022-06-02 07:59:58 -06:00
```
2022-06-13 09:16:40 -06:00
#### **Text to Image generation with Latent Diffusion**
2022-06-10 08:33:58 -06:00
```python
from diffusers import DiffusionPipeline
ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")
generator = torch.Generator()
generator = generator.manual_seed(6694729458485568)
prompt = "A painting of a squirrel eating a burger"
image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50)
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = image_processed * 255.
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
image_pil.save("test.png")
```
2022-06-13 09:16:40 -06:00
#### **Text to speech with BDDM**
2022-06-13 09:13:31 -06:00
_Follow the isnstructions [here ](https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/ ) to load tacotron2 model._
```python
import torch
from diffusers import BDDM, DiffusionPipeline
torch_device = "cuda"
# load the BDDM pipeline
2022-06-15 01:44:18 -06:00
bddm = DiffusionPipeline.from_pretrained("fusing/diffwave-vocoder-ljspeech")
2022-06-13 09:13:31 -06:00
# load tacotron2 to get the mel spectograms
tacotron2 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tacotron2', model_math='fp16')
tacotron2 = tacotron2.to(torch_device).eval()
text = "Hello world, I missed you so much."
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tts_utils')
sequences, lengths = utils.prepare_input_sequence([text])
2022-06-13 09:15:52 -06:00
# generate mel spectograms using text
2022-06-13 09:13:31 -06:00
with torch.no_grad():
2022-06-13 09:15:52 -06:00
mel_spec, _, _ = tacotron2.infer(sequences, lengths)
2022-06-13 09:13:31 -06:00
2022-06-13 09:15:52 -06:00
# generate the speech by passing mel spectograms to BDDM pipeline
2022-06-13 09:13:31 -06:00
generator = torch.manual_seed(0)
2022-06-13 09:15:52 -06:00
audio = bddm(mel_spec, generator, torch_device)
2022-06-13 09:13:31 -06:00
2022-06-13 09:15:52 -06:00
# save generated audio
2022-06-13 09:13:31 -06:00
from scipy.io.wavfile import write as wavwrite
sampling_rate = 22050
wavwrite("generated_audio.wav", sampling_rate, audio.squeeze().cpu().numpy())
```
2022-06-01 16:42:08 -06:00
## Library structure:
```
2022-06-13 09:30:03 -06:00
├── LICENSE
├── Makefile
2022-06-07 08:58:19 -06:00
├── README.md
2022-06-13 09:30:03 -06:00
├── pyproject.toml
2022-06-07 08:58:19 -06:00
├── setup.cfg
├── setup.py
2022-06-01 16:42:08 -06:00
├── src
2022-06-13 09:30:03 -06:00
│ ├── diffusers
│ ├── __init__ .py
│ ├── configuration_utils.py
│ ├── dependency_versions_check.py
│ ├── dependency_versions_table.py
│ ├── dynamic_modules_utils.py
│ ├── modeling_utils.py
│ ├── models
│ │ ├── __init__ .py
│ │ ├── unet.py
│ │ ├── unet_glide.py
│ │ └── unet_ldm.py
│ ├── pipeline_utils.py
│ ├── pipelines
│ │ ├── __init__ .py
│ │ ├── configuration_ldmbert.py
│ │ ├── conversion_glide.py
│ │ ├── modeling_vae.py
│ │ ├── pipeline_bddm.py
│ │ ├── pipeline_ddim.py
│ │ ├── pipeline_ddpm.py
│ │ ├── pipeline_glide.py
│ │ └── pipeline_latent_diffusion.py
│ ├── schedulers
│ │ ├── __init__ .py
│ │ ├── classifier_free_guidance.py
│ │ ├── scheduling_ddim.py
│ │ ├── scheduling_ddpm.py
│ │ ├── scheduling_plms.py
│ │ └── scheduling_utils.py
│ ├── testing_utils.py
│ └── utils
│ ├── __init__ .py
│ └── logging.py
2022-06-01 16:42:08 -06:00
├── tests
2022-06-13 09:30:03 -06:00
│ ├── __init__ .py
│ ├── test_modeling_utils.py
│ └── test_scheduler.py
└── utils
├── check_config_docstrings.py
├── check_copies.py
├── check_dummies.py
├── check_inits.py
├── check_repo.py
├── check_table.py
└── check_tf_ops.py
2022-06-01 16:42:08 -06:00
```