2022-10-21 04:49:52 -06:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import gc
|
|
|
|
import random
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from diffusers import (
|
|
|
|
AutoencoderKL,
|
2022-11-13 15:54:30 -07:00
|
|
|
DDIMScheduler,
|
2022-10-21 04:49:52 -06:00
|
|
|
LMSDiscreteScheduler,
|
|
|
|
PNDMScheduler,
|
|
|
|
StableDiffusionImg2ImgPipeline,
|
|
|
|
UNet2DConditionModel,
|
|
|
|
UNet2DModel,
|
|
|
|
VQModel,
|
|
|
|
)
|
2022-11-04 10:54:01 -06:00
|
|
|
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
|
2022-10-24 08:34:01 -06:00
|
|
|
from diffusers.utils.testing_utils import require_torch_gpu
|
2022-10-21 04:49:52 -06:00
|
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
|
2022-10-24 08:34:01 -06:00
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
|
|
|
2022-10-24 08:34:01 -06:00
|
|
|
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
2022-10-21 04:49:52 -06:00
|
|
|
def tearDown(self):
|
|
|
|
# clean up the VRAM after each test
|
|
|
|
super().tearDown()
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_image(self):
|
|
|
|
batch_size = 1
|
|
|
|
num_channels = 3
|
|
|
|
sizes = (32, 32)
|
|
|
|
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
|
|
|
return image
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_uncond_unet(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = UNet2DModel(
|
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_cond_unet(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = UNet2DConditionModel(
|
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=4,
|
|
|
|
out_channels=4,
|
|
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
|
|
cross_attention_dim=32,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_cond_unet_inpaint(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = UNet2DConditionModel(
|
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=9,
|
|
|
|
out_channels=4,
|
|
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
|
|
cross_attention_dim=32,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_vq_model(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = VQModel(
|
|
|
|
block_out_channels=[32, 64],
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
|
|
latent_channels=3,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_vae(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = AutoencoderKL(
|
|
|
|
block_out_channels=[32, 64],
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
|
|
latent_channels=4,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_text_encoder(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
config = CLIPTextConfig(
|
|
|
|
bos_token_id=0,
|
|
|
|
eos_token_id=2,
|
|
|
|
hidden_size=32,
|
|
|
|
intermediate_size=37,
|
|
|
|
layer_norm_eps=1e-05,
|
|
|
|
num_attention_heads=4,
|
|
|
|
num_hidden_layers=5,
|
|
|
|
pad_token_id=1,
|
|
|
|
vocab_size=1000,
|
|
|
|
)
|
|
|
|
return CLIPTextModel(config)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_extractor(self):
|
|
|
|
def extract(*args, **kwargs):
|
|
|
|
class Out:
|
|
|
|
def __init__(self):
|
|
|
|
self.pixel_values = torch.ones([0])
|
|
|
|
|
|
|
|
def to(self, device):
|
|
|
|
self.pixel_values.to(device)
|
|
|
|
return self
|
|
|
|
|
|
|
|
return Out()
|
|
|
|
|
|
|
|
return extract
|
|
|
|
|
2022-11-04 10:54:01 -06:00
|
|
|
def test_stable_diffusion_img2img_default_case(self):
|
2022-10-21 04:49:52 -06:00
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
unet = self.dummy_cond_unet
|
|
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
init_image = self.dummy_image.to(device)
|
|
|
|
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=bert,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=self.dummy_extractor,
|
|
|
|
)
|
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
|
|
output = sd_pipe(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
|
|
|
|
|
|
|
image = output.images
|
|
|
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
|
|
image_from_tuple = sd_pipe(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
return_dict=False,
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
|
2022-11-04 10:54:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_negative_prompt(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
unet = self.dummy_cond_unet
|
|
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
init_image = self.dummy_image.to(device)
|
|
|
|
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=bert,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=self.dummy_extractor,
|
|
|
|
)
|
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
negative_prompt = "french fries"
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
|
|
output = sd_pipe(
|
|
|
|
prompt,
|
|
|
|
negative_prompt=negative_prompt,
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
|
2022-11-04 10:54:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_multiple_init_images(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
unet = self.dummy_cond_unet
|
|
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
init_image = self.dummy_image.to(device).repeat(2, 1, 1, 1)
|
|
|
|
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=bert,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=self.dummy_extractor,
|
|
|
|
)
|
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = 2 * ["A painting of a squirrel eating a burger"]
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
|
|
output = sd_pipe(
|
|
|
|
prompt,
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
|
|
|
|
|
|
|
image = output.images
|
|
|
|
|
|
|
|
image_slice = image[-1, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (2, 32, 32, 3)
|
|
|
|
expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
|
2022-11-04 10:54:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_k_lms(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
unet = self.dummy_cond_unet
|
|
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
|
|
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
init_image = self.dummy_image.to(device)
|
|
|
|
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=bert,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=self.dummy_extractor,
|
|
|
|
)
|
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
|
|
output = sd_pipe(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
|
|
|
image = output.images
|
|
|
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
|
|
output = sd_pipe(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
return_dict=False,
|
|
|
|
)
|
|
|
|
image_from_tuple = output[0]
|
|
|
|
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
|
2022-11-04 10:54:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_num_images_per_prompt(self):
|
|
|
|
device = "cpu"
|
|
|
|
unet = self.dummy_cond_unet
|
|
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
init_image = self.dummy_image.to(device)
|
|
|
|
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=bert,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=self.dummy_extractor,
|
|
|
|
)
|
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
|
|
|
|
# test num_images_per_prompt=1 (default)
|
|
|
|
images = sd_pipe(
|
|
|
|
prompt,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
).images
|
|
|
|
|
|
|
|
assert images.shape == (1, 32, 32, 3)
|
|
|
|
|
|
|
|
# test num_images_per_prompt=1 (default) for batch of prompts
|
|
|
|
batch_size = 2
|
|
|
|
images = sd_pipe(
|
|
|
|
[prompt] * batch_size,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
).images
|
|
|
|
|
|
|
|
assert images.shape == (batch_size, 32, 32, 3)
|
|
|
|
|
|
|
|
# test num_images_per_prompt for single prompt
|
|
|
|
num_images_per_prompt = 2
|
|
|
|
images = sd_pipe(
|
|
|
|
prompt,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
|
).images
|
|
|
|
|
|
|
|
assert images.shape == (num_images_per_prompt, 32, 32, 3)
|
|
|
|
|
|
|
|
# test num_images_per_prompt for batch of prompts
|
|
|
|
batch_size = 2
|
|
|
|
images = sd_pipe(
|
|
|
|
[prompt] * batch_size,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
|
).images
|
|
|
|
|
|
|
|
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)
|
|
|
|
|
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
|
|
|
|
def test_stable_diffusion_img2img_fp16(self):
|
|
|
|
"""Test that stable diffusion img2img works with fp16"""
|
|
|
|
unet = self.dummy_cond_unet
|
|
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
init_image = self.dummy_image.to(torch_device)
|
|
|
|
|
|
|
|
# put models in fp16
|
|
|
|
unet = unet.half()
|
|
|
|
vae = vae.half()
|
|
|
|
bert = bert.half()
|
|
|
|
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=bert,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=self.dummy_extractor,
|
|
|
|
)
|
|
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
image = sd_pipe(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="np",
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
).images
|
|
|
|
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
|
|
|
|
|
|
|
|
@slow
|
2022-10-24 08:34:01 -06:00
|
|
|
@require_torch_gpu
|
|
|
|
class StableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
|
2022-10-21 04:49:52 -06:00
|
|
|
def tearDown(self):
|
|
|
|
# clean up the VRAM after each test
|
|
|
|
super().tearDown()
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
2022-11-04 10:54:01 -06:00
|
|
|
def test_stable_diffusion_img2img_pipeline_default(self):
|
2022-10-21 04:49:52 -06:00
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
|
|
)
|
|
|
|
init_image = init_image.resize((768, 512))
|
2022-11-04 10:54:01 -06:00
|
|
|
expected_image = load_numpy(
|
2022-11-13 15:54:30 -07:00
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.npy"
|
2022-11-04 10:54:01 -06:00
|
|
|
)
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
|
|
|
model_id,
|
|
|
|
safety_checker=None,
|
|
|
|
)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
output = pipe(
|
|
|
|
prompt=prompt,
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
strength=0.75,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
generator=generator,
|
|
|
|
output_type="np",
|
|
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
|
|
|
|
assert image.shape == (512, 768, 3)
|
|
|
|
# img2img is flaky across GPUs even in fp32, so using MAE here
|
2022-11-13 15:54:30 -07:00
|
|
|
assert np.abs(expected_image - image).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_pipeline_k_lms(self):
|
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
|
|
)
|
|
|
|
init_image = init_image.resize((768, 512))
|
2022-11-04 10:54:01 -06:00
|
|
|
expected_image = load_numpy(
|
2022-11-13 15:54:30 -07:00
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_k_lms.npy"
|
2022-11-04 10:54:01 -06:00
|
|
|
)
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
2022-11-15 10:15:13 -07:00
|
|
|
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
2022-10-21 04:49:52 -06:00
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
|
|
|
model_id,
|
|
|
|
scheduler=lms,
|
|
|
|
safety_checker=None,
|
|
|
|
)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
output = pipe(
|
|
|
|
prompt=prompt,
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
strength=0.75,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
generator=generator,
|
|
|
|
output_type="np",
|
|
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
|
|
|
|
assert image.shape == (512, 768, 3)
|
2022-11-13 15:54:30 -07:00
|
|
|
assert np.abs(expected_image - image).max() < 1e-3
|
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_pipeline_ddim(self):
|
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
|
|
)
|
|
|
|
init_image = init_image.resize((768, 512))
|
|
|
|
expected_image = load_numpy(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_ddim.npy"
|
|
|
|
)
|
|
|
|
|
|
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
2022-11-15 10:15:13 -07:00
|
|
|
ddim = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
2022-11-13 15:54:30 -07:00
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
|
|
|
model_id,
|
|
|
|
scheduler=ddim,
|
|
|
|
safety_checker=None,
|
|
|
|
)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
output = pipe(
|
|
|
|
prompt=prompt,
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-11-13 15:54:30 -07:00
|
|
|
strength=0.75,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
generator=generator,
|
|
|
|
output_type="np",
|
|
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
|
|
|
|
assert image.shape == (512, 768, 3)
|
|
|
|
assert np.abs(expected_image - image).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_intermediate_state(self):
|
|
|
|
number_of_steps = 0
|
|
|
|
|
|
|
|
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
|
|
|
|
test_callback_fn.has_been_called = True
|
|
|
|
nonlocal number_of_steps
|
|
|
|
number_of_steps += 1
|
|
|
|
if step == 0:
|
|
|
|
latents = latents.detach().cpu().numpy()
|
|
|
|
assert latents.shape == (1, 4, 64, 96)
|
|
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
|
|
expected_slice = np.array([0.9052, -0.0184, 0.4810, 0.2898, 0.5851, 1.4920, 0.5362, 1.9838, 0.0530])
|
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
elif step == 37:
|
|
|
|
latents = latents.detach().cpu().numpy()
|
|
|
|
assert latents.shape == (1, 4, 64, 96)
|
|
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
|
|
expected_slice = np.array([0.7071, 0.7831, 0.8300, 1.8140, 1.7840, 1.9402, 1.3651, 1.6590, 1.2828])
|
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
test_callback_fn.has_been_called = False
|
|
|
|
|
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
|
|
)
|
|
|
|
init_image = init_image.resize((768, 512))
|
|
|
|
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
2022-11-03 10:25:57 -06:00
|
|
|
"CompVis/stable-diffusion-v1-4",
|
|
|
|
revision="fp16",
|
|
|
|
torch_dtype=torch.float16,
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
with torch.autocast(torch_device):
|
|
|
|
pipe(
|
|
|
|
prompt=prompt,
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-10-21 04:49:52 -06:00
|
|
|
strength=0.75,
|
|
|
|
num_inference_steps=50,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
generator=generator,
|
|
|
|
callback=test_callback_fn,
|
|
|
|
callback_steps=1,
|
|
|
|
)
|
|
|
|
assert test_callback_fn.has_been_called
|
2022-11-28 14:56:28 -07:00
|
|
|
assert number_of_steps == 37
|
2022-11-04 12:25:28 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.cuda.reset_max_memory_allocated()
|
2022-11-09 02:28:10 -07:00
|
|
|
torch.cuda.reset_peak_memory_stats()
|
2022-11-04 12:25:28 -06:00
|
|
|
|
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
|
|
)
|
|
|
|
init_image = init_image.resize((768, 512))
|
|
|
|
|
|
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
2022-11-15 10:15:13 -07:00
|
|
|
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
2022-11-04 12:25:28 -06:00
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
2022-11-09 02:28:10 -07:00
|
|
|
model_id, scheduler=lms, safety_checker=None, device_map="auto", revision="fp16", torch_dtype=torch.float16
|
2022-11-04 12:25:28 -06:00
|
|
|
)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing(1)
|
|
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
_ = pipe(
|
|
|
|
prompt=prompt,
|
2022-12-01 08:55:22 -07:00
|
|
|
image=init_image,
|
2022-11-04 12:25:28 -06:00
|
|
|
strength=0.75,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
generator=generator,
|
|
|
|
output_type="np",
|
|
|
|
num_inference_steps=5,
|
|
|
|
)
|
|
|
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
2022-11-09 02:28:10 -07:00
|
|
|
# make sure that less than 2.2 GB is allocated
|
|
|
|
assert mem_bytes < 2.2 * 10**9
|