2022-11-24 14:42:59 -07:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import gc
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from diffusers import (
|
|
|
|
AutoencoderKL,
|
|
|
|
DDIMScheduler,
|
|
|
|
EulerAncestralDiscreteScheduler,
|
|
|
|
EulerDiscreteScheduler,
|
|
|
|
LMSDiscreteScheduler,
|
|
|
|
PNDMScheduler,
|
|
|
|
StableDiffusionPipeline,
|
|
|
|
UNet2DConditionModel,
|
|
|
|
logging,
|
|
|
|
)
|
|
|
|
from diffusers.utils import load_numpy, slow, torch_device
|
|
|
|
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
|
2022-11-25 07:14:13 -07:00
|
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
2022-11-24 14:42:59 -07:00
|
|
|
|
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
|
|
|
|
|
|
class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
2022-12-06 10:35:30 -07:00
|
|
|
pipeline_class = StableDiffusionPipeline
|
2022-11-24 14:42:59 -07:00
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
def get_dummy_components(self):
|
2022-11-24 14:42:59 -07:00
|
|
|
torch.manual_seed(0)
|
2022-12-06 10:35:30 -07:00
|
|
|
unet = UNet2DConditionModel(
|
2022-11-24 14:42:59 -07:00
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=4,
|
|
|
|
out_channels=4,
|
|
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
|
|
cross_attention_dim=32,
|
|
|
|
# SD2-specific config below
|
|
|
|
attention_head_dim=(2, 4, 8, 8),
|
|
|
|
use_linear_projection=True,
|
|
|
|
)
|
2022-12-06 10:35:30 -07:00
|
|
|
scheduler = DDIMScheduler(
|
|
|
|
beta_start=0.00085,
|
|
|
|
beta_end=0.012,
|
|
|
|
beta_schedule="scaled_linear",
|
|
|
|
clip_sample=False,
|
|
|
|
set_alpha_to_one=False,
|
|
|
|
)
|
2022-11-24 14:42:59 -07:00
|
|
|
torch.manual_seed(0)
|
2022-12-06 10:35:30 -07:00
|
|
|
vae = AutoencoderKL(
|
2022-11-24 14:42:59 -07:00
|
|
|
block_out_channels=[32, 64],
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
|
|
latent_channels=4,
|
|
|
|
sample_size=128,
|
|
|
|
)
|
|
|
|
torch.manual_seed(0)
|
2022-12-06 10:35:30 -07:00
|
|
|
text_encoder_config = CLIPTextConfig(
|
2022-11-24 14:42:59 -07:00
|
|
|
bos_token_id=0,
|
|
|
|
eos_token_id=2,
|
|
|
|
hidden_size=32,
|
|
|
|
intermediate_size=37,
|
|
|
|
layer_norm_eps=1e-05,
|
|
|
|
num_attention_heads=4,
|
|
|
|
num_hidden_layers=5,
|
|
|
|
pad_token_id=1,
|
|
|
|
vocab_size=1000,
|
|
|
|
# SD2-specific config below
|
|
|
|
hidden_act="gelu",
|
|
|
|
projection_dim=512,
|
|
|
|
)
|
2022-12-06 10:35:30 -07:00
|
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
2022-11-24 14:42:59 -07:00
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
components = {
|
|
|
|
"unet": unet,
|
|
|
|
"scheduler": scheduler,
|
|
|
|
"vae": vae,
|
|
|
|
"text_encoder": text_encoder,
|
|
|
|
"tokenizer": tokenizer,
|
|
|
|
"safety_checker": None,
|
|
|
|
"feature_extractor": None,
|
|
|
|
}
|
|
|
|
return components
|
|
|
|
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
|
|
if str(device).startswith("mps"):
|
|
|
|
generator = torch.manual_seed(seed)
|
|
|
|
else:
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
inputs = {
|
|
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
|
|
"generator": generator,
|
|
|
|
"num_inference_steps": 2,
|
|
|
|
"guidance_scale": 6.0,
|
|
|
|
"output_type": "numpy",
|
|
|
|
}
|
|
|
|
return inputs
|
2022-11-24 14:42:59 -07:00
|
|
|
|
|
|
|
def test_stable_diffusion_ddim(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
2022-11-24 14:42:59 -07:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = sd_pipe(**inputs).images
|
2022-11-24 14:42:59 -07:00
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.5649, 0.6022, 0.4804, 0.5270, 0.5585, 0.4643, 0.5159, 0.4963, 0.4793])
|
|
|
|
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_stable_diffusion_pndm(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
|
|
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
2022-11-24 14:42:59 -07:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = sd_pipe(**inputs).images
|
2022-11-24 14:42:59 -07:00
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.5099, 0.5677, 0.4671, 0.5128, 0.5697, 0.4676, 0.5277, 0.4964, 0.4946])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_stable_diffusion_k_lms(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
|
|
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
2022-11-24 14:42:59 -07:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = sd_pipe(**inputs).images
|
2022-11-24 14:42:59 -07:00
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_stable_diffusion_k_euler_ancestral(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
|
|
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
2022-11-24 14:42:59 -07:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = sd_pipe(**inputs).images
|
2022-11-24 14:42:59 -07:00
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.4715, 0.5376, 0.4569, 0.5224, 0.5734, 0.4797, 0.5465, 0.5074, 0.5046])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_stable_diffusion_k_euler(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
|
|
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
2022-11-24 14:42:59 -07:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = sd_pipe(**inputs).images
|
2022-11-24 14:42:59 -07:00
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_stable_diffusion_long_prompt(self):
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
|
|
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
2022-11-24 14:42:59 -07:00
|
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
do_classifier_free_guidance = True
|
|
|
|
negative_prompt = None
|
|
|
|
num_images_per_prompt = 1
|
|
|
|
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
|
|
|
|
|
|
|
|
prompt = 25 * "@"
|
|
|
|
with CaptureLogger(logger) as cap_logger_3:
|
|
|
|
text_embeddings_3 = sd_pipe._encode_prompt(
|
|
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
|
|
)
|
|
|
|
|
|
|
|
prompt = 100 * "@"
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
|
|
text_embeddings = sd_pipe._encode_prompt(
|
|
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
|
|
)
|
|
|
|
|
|
|
|
negative_prompt = "Hello"
|
|
|
|
with CaptureLogger(logger) as cap_logger_2:
|
|
|
|
text_embeddings_2 = sd_pipe._encode_prompt(
|
|
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
|
|
)
|
|
|
|
|
|
|
|
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
|
|
|
|
assert text_embeddings.shape[1] == 77
|
|
|
|
|
|
|
|
assert cap_logger.out == cap_logger_2.out
|
|
|
|
# 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
|
|
|
|
assert cap_logger.out.count("@") == 25
|
|
|
|
assert cap_logger_3.out == ""
|
|
|
|
|
|
|
|
|
|
|
|
@slow
|
|
|
|
@require_torch_gpu
|
|
|
|
class StableDiffusion2PipelineIntegrationTests(unittest.TestCase):
|
|
|
|
def tearDown(self):
|
|
|
|
# clean up the VRAM after each test
|
|
|
|
super().tearDown()
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
def test_stable_diffusion(self):
|
|
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
|
|
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
|
|
|
|
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
expected_slice = np.array([0.0788, 0.0823, 0.1091, 0.1165, 0.1263, 0.1459, 0.1317, 0.1507, 0.1551])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_stable_diffusion_ddim(self):
|
|
|
|
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
|
|
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base", scheduler=scheduler)
|
|
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
|
|
|
|
output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="numpy")
|
|
|
|
image = output.images
|
|
|
|
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
expected_slice = np.array([0.0642, 0.0382, 0.0408, 0.0395, 0.0227, 0.0942, 0.0749, 0.0669, 0.0248])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_stable_diffusion_k_lms(self):
|
|
|
|
scheduler = LMSDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
|
|
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base", scheduler=scheduler)
|
|
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "a photograph of an astronaut riding a horse"
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
image = sd_pipe(
|
|
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="numpy"
|
|
|
|
).images
|
|
|
|
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
expected_slice = np.array([0.0548, 0.0626, 0.0612, 0.0611, 0.0706, 0.0586, 0.0843, 0.0333, 0.1197])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
2022-11-25 07:14:13 -07:00
|
|
|
def test_stable_diffusion_attention_slicing(self):
|
2022-11-24 14:42:59 -07:00
|
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
model_id = "stabilityai/stable-diffusion-2-base"
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "a photograph of an astronaut riding a horse"
|
|
|
|
|
|
|
|
# make attention efficient
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
with torch.autocast(torch_device):
|
|
|
|
output_chunked = pipe(
|
|
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
|
|
)
|
|
|
|
image_chunked = output_chunked.images
|
|
|
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
# make sure that less than 3.75 GB is allocated
|
|
|
|
assert mem_bytes < 3.75 * 10**9
|
|
|
|
|
|
|
|
# disable chunking
|
|
|
|
pipe.disable_attention_slicing()
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
with torch.autocast(torch_device):
|
|
|
|
output = pipe(
|
|
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
|
|
)
|
|
|
|
image = output.images
|
|
|
|
|
|
|
|
# make sure that more than 3.75 GB is allocated
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
|
|
assert mem_bytes > 3.75 * 10**9
|
|
|
|
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3
|
|
|
|
|
2022-11-25 04:53:10 -07:00
|
|
|
def test_stable_diffusion_same_quality(self):
|
2022-11-24 14:42:59 -07:00
|
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
model_id = "stabilityai/stable-diffusion-2-base"
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
|
|
|
|
pipe = pipe.to(torch_device)
|
2022-11-25 04:53:10 -07:00
|
|
|
pipe.enable_attention_slicing()
|
2022-11-24 14:42:59 -07:00
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "a photograph of an astronaut riding a horse"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
output_chunked = pipe(
|
|
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
|
|
)
|
|
|
|
image_chunked = output_chunked.images
|
|
|
|
|
2022-11-25 04:53:10 -07:00
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
|
|
|
pipe = pipe.to(torch_device)
|
2022-11-24 14:42:59 -07:00
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
2022-11-25 04:53:10 -07:00
|
|
|
output = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")
|
|
|
|
image = output.images
|
2022-11-24 14:42:59 -07:00
|
|
|
|
|
|
|
# Make sure results are close enough
|
|
|
|
diff = np.abs(image_chunked.flatten() - image.flatten())
|
|
|
|
# They ARE different since ops are not run always at the same precision
|
|
|
|
# however, they should be extremely close.
|
2022-11-25 04:53:10 -07:00
|
|
|
assert diff.mean() < 5e-2
|
2022-11-24 14:42:59 -07:00
|
|
|
|
|
|
|
def test_stable_diffusion_text2img_pipeline_default(self):
|
|
|
|
expected_image = load_numpy(
|
|
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-text2img/astronaut_riding_a_horse.npy"
|
|
|
|
)
|
|
|
|
|
|
|
|
model_id = "stabilityai/stable-diffusion-2-base"
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, safety_checker=None)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "astronaut riding a horse"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
2022-11-25 07:14:13 -07:00
|
|
|
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
|
2022-11-24 14:42:59 -07:00
|
|
|
image = output.images[0]
|
|
|
|
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
assert np.abs(expected_image - image).max() < 5e-3
|
|
|
|
|
|
|
|
def test_stable_diffusion_text2img_intermediate_state(self):
|
|
|
|
number_of_steps = 0
|
|
|
|
|
|
|
|
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
|
|
|
|
test_callback_fn.has_been_called = True
|
|
|
|
nonlocal number_of_steps
|
|
|
|
number_of_steps += 1
|
|
|
|
if step == 0:
|
|
|
|
latents = latents.detach().cpu().numpy()
|
|
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
|
|
expected_slice = np.array([1.8606, 1.3169, -0.0691, 1.2374, -2.309, 1.077, -0.1084, -0.6774, -2.9594])
|
2022-11-25 04:53:10 -07:00
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
|
2022-11-24 14:42:59 -07:00
|
|
|
elif step == 20:
|
|
|
|
latents = latents.detach().cpu().numpy()
|
|
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
2022-11-25 08:15:05 -07:00
|
|
|
expected_slice = np.array([1.0757, 1.1860, 1.1410, 0.4645, -0.2476, 0.6100, -0.7755, -0.8841, -0.9497])
|
2022-11-29 03:48:57 -07:00
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
|
2022-11-24 14:42:59 -07:00
|
|
|
|
|
|
|
test_callback_fn.has_been_called = False
|
|
|
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
"stabilityai/stable-diffusion-2-base", revision="fp16", torch_dtype=torch.float16
|
|
|
|
)
|
|
|
|
pipe = pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
|
|
|
prompt = "Andromeda galaxy in a bottle"
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
with torch.autocast(torch_device):
|
|
|
|
pipe(
|
|
|
|
prompt=prompt,
|
|
|
|
num_inference_steps=20,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
generator=generator,
|
|
|
|
callback=test_callback_fn,
|
|
|
|
callback_steps=1,
|
|
|
|
)
|
|
|
|
assert test_callback_fn.has_been_called
|
2022-11-28 14:56:28 -07:00
|
|
|
assert number_of_steps == 20
|
2022-11-24 14:42:59 -07:00
|
|
|
|
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.cuda.reset_max_memory_allocated()
|
|
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
|
|
|
|
pipeline_id = "stabilityai/stable-diffusion-2-base"
|
|
|
|
prompt = "Andromeda galaxy in a bottle"
|
|
|
|
|
|
|
|
pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, revision="fp16", torch_dtype=torch.float16)
|
|
|
|
pipeline = pipeline.to(torch_device)
|
|
|
|
pipeline.enable_attention_slicing(1)
|
|
|
|
pipeline.enable_sequential_cpu_offload()
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
_ = pipeline(prompt, generator=generator, num_inference_steps=5)
|
|
|
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
|
|
# make sure that less than 2.8 GB is allocated
|
|
|
|
assert mem_bytes < 2.8 * 10**9
|