2022-07-20 20:11:28 -06:00
|
|
|
# coding=utf-8
|
2023-03-01 02:31:00 -07:00
|
|
|
# Copyright 2023 The HuggingFace Inc. team.
|
2022-07-20 20:11:28 -06:00
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
""" Conversion script for the LDM checkpoints. """
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import json
|
2022-08-25 07:46:09 -06:00
|
|
|
import os
|
|
|
|
|
2022-07-20 20:11:28 -06:00
|
|
|
import torch
|
2023-02-07 15:46:23 -07:00
|
|
|
from transformers.file_utils import has_file
|
2022-08-25 07:46:09 -06:00
|
|
|
|
|
|
|
from diffusers import UNet2DConditionModel, UNet2DModel
|
2022-07-20 20:11:28 -06:00
|
|
|
|
2022-08-25 07:46:09 -06:00
|
|
|
|
2022-07-20 20:11:28 -06:00
|
|
|
do_only_config = False
|
|
|
|
do_only_weights = True
|
|
|
|
do_only_renaming = False
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--repo_path",
|
|
|
|
default=None,
|
|
|
|
type=str,
|
|
|
|
required=True,
|
|
|
|
help="The config json file corresponding to the architecture.",
|
|
|
|
)
|
|
|
|
|
2022-08-25 07:46:09 -06:00
|
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
2022-07-20 20:11:28 -06:00
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
config_parameters_to_change = {
|
|
|
|
"image_size": "sample_size",
|
|
|
|
"num_res_blocks": "layers_per_block",
|
|
|
|
"block_channels": "block_out_channels",
|
|
|
|
"down_blocks": "down_block_types",
|
|
|
|
"up_blocks": "up_block_types",
|
|
|
|
"downscale_freq_shift": "freq_shift",
|
|
|
|
"resnet_num_groups": "norm_num_groups",
|
|
|
|
"resnet_act_fn": "act_fn",
|
|
|
|
"resnet_eps": "norm_eps",
|
|
|
|
"num_head_channels": "attention_head_dim",
|
|
|
|
}
|
|
|
|
|
|
|
|
key_parameters_to_change = {
|
|
|
|
"time_steps": "time_proj",
|
|
|
|
"mid": "mid_block",
|
|
|
|
"downsample_blocks": "down_blocks",
|
|
|
|
"upsample_blocks": "up_blocks",
|
|
|
|
}
|
|
|
|
|
|
|
|
subfolder = "" if has_file(args.repo_path, "config.json") else "unet"
|
|
|
|
|
|
|
|
with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader:
|
|
|
|
text = reader.read()
|
|
|
|
config = json.loads(text)
|
|
|
|
|
|
|
|
if do_only_config:
|
|
|
|
for key in config_parameters_to_change.keys():
|
|
|
|
config.pop(key, None)
|
|
|
|
|
|
|
|
if has_file(args.repo_path, "config.json"):
|
|
|
|
model = UNet2DModel(**config)
|
|
|
|
else:
|
|
|
|
class_name = UNet2DConditionModel if "ldm-text2im-large-256" in args.repo_path else UNet2DModel
|
|
|
|
model = class_name(**config)
|
|
|
|
|
|
|
|
if do_only_config:
|
|
|
|
model.save_config(os.path.join(args.repo_path, subfolder))
|
|
|
|
|
|
|
|
config = dict(model.config)
|
|
|
|
|
|
|
|
if do_only_renaming:
|
|
|
|
for key, value in config_parameters_to_change.items():
|
|
|
|
if key in config:
|
|
|
|
config[value] = config[key]
|
|
|
|
del config[key]
|
|
|
|
|
|
|
|
config["down_block_types"] = [k.replace("UNetRes", "") for k in config["down_block_types"]]
|
|
|
|
config["up_block_types"] = [k.replace("UNetRes", "") for k in config["up_block_types"]]
|
|
|
|
|
|
|
|
if do_only_weights:
|
|
|
|
state_dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin"))
|
|
|
|
|
|
|
|
new_state_dict = {}
|
|
|
|
for param_key, param_value in state_dict.items():
|
|
|
|
if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"):
|
|
|
|
continue
|
|
|
|
has_changed = False
|
|
|
|
for key, new_key in key_parameters_to_change.items():
|
|
|
|
if not has_changed and param_key.split(".")[0] == key:
|
|
|
|
new_state_dict[".".join([new_key] + param_key.split(".")[1:])] = param_value
|
|
|
|
has_changed = True
|
|
|
|
if not has_changed:
|
|
|
|
new_state_dict[param_key] = param_value
|
|
|
|
|
|
|
|
model.load_state_dict(new_state_dict)
|
|
|
|
model.save_pretrained(os.path.join(args.repo_path, subfolder))
|