2023-03-01 02:31:00 -07:00
|
|
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2022-10-20 12:26:03 -06:00
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
|
|
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
|
|
|
|
sys.path.append(os.path.join(git_repo_path, "utils"))
|
|
|
|
|
2023-02-07 15:46:23 -07:00
|
|
|
import check_dummies # noqa: E402
|
2022-10-20 12:26:03 -06:00
|
|
|
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
|
|
|
|
|
|
|
|
|
|
|
|
# Align TRANSFORMERS_PATH in check_dummies with the current path
|
|
|
|
check_dummies.PATH_TO_DIFFUSERS = os.path.join(git_repo_path, "src", "diffusers")
|
|
|
|
|
|
|
|
|
|
|
|
class CheckDummiesTester(unittest.TestCase):
|
|
|
|
def test_find_backend(self):
|
|
|
|
simple_backend = find_backend(" if not is_torch_available():")
|
|
|
|
self.assertEqual(simple_backend, "torch")
|
|
|
|
|
|
|
|
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
|
|
|
|
# self.assertEqual(backend_with_underscore, "tensorflow_text")
|
|
|
|
|
|
|
|
double_backend = find_backend(" if not (is_torch_available() and is_transformers_available()):")
|
|
|
|
self.assertEqual(double_backend, "torch_and_transformers")
|
|
|
|
|
|
|
|
# double_backend_with_underscore = find_backend(
|
|
|
|
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
|
|
|
|
# )
|
|
|
|
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
|
|
|
|
|
|
|
|
triple_backend = find_backend(
|
|
|
|
" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):"
|
|
|
|
)
|
|
|
|
self.assertEqual(triple_backend, "torch_and_transformers_and_onnx")
|
|
|
|
|
|
|
|
def test_read_init(self):
|
|
|
|
objects = read_init()
|
|
|
|
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
|
2022-11-04 07:58:52 -06:00
|
|
|
self.assertIn("torch", objects)
|
2022-10-20 12:26:03 -06:00
|
|
|
self.assertIn("torch_and_transformers", objects)
|
|
|
|
self.assertIn("flax_and_transformers", objects)
|
|
|
|
self.assertIn("torch_and_transformers_and_onnx", objects)
|
|
|
|
|
|
|
|
# Likewise, we can't assert on the exact content of a key
|
2022-11-04 07:58:52 -06:00
|
|
|
self.assertIn("UNet2DModel", objects["torch"])
|
2022-10-20 12:26:03 -06:00
|
|
|
self.assertIn("FlaxUNet2DConditionModel", objects["flax"])
|
|
|
|
self.assertIn("StableDiffusionPipeline", objects["torch_and_transformers"])
|
|
|
|
self.assertIn("FlaxStableDiffusionPipeline", objects["flax_and_transformers"])
|
|
|
|
self.assertIn("LMSDiscreteScheduler", objects["torch_and_scipy"])
|
|
|
|
self.assertIn("OnnxStableDiffusionPipeline", objects["torch_and_transformers_and_onnx"])
|
|
|
|
|
|
|
|
def test_create_dummy_object(self):
|
|
|
|
dummy_constant = create_dummy_object("CONSTANT", "'torch'")
|
|
|
|
self.assertEqual(dummy_constant, "\nCONSTANT = None\n")
|
|
|
|
|
|
|
|
dummy_function = create_dummy_object("function", "'torch'")
|
|
|
|
self.assertEqual(
|
|
|
|
dummy_function, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n"
|
|
|
|
)
|
|
|
|
|
|
|
|
expected_dummy_class = """
|
|
|
|
class FakeClass(metaclass=DummyObject):
|
|
|
|
_backends = 'torch'
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
requires_backends(self, 'torch')
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_config(cls, *args, **kwargs):
|
|
|
|
requires_backends(cls, 'torch')
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_pretrained(cls, *args, **kwargs):
|
|
|
|
requires_backends(cls, 'torch')
|
|
|
|
"""
|
|
|
|
dummy_class = create_dummy_object("FakeClass", "'torch'")
|
|
|
|
self.assertEqual(dummy_class, expected_dummy_class)
|
|
|
|
|
|
|
|
def test_create_dummy_files(self):
|
|
|
|
expected_dummy_pytorch_file = """# This file is autogenerated by the command `make fix-copies`, do not edit.
|
|
|
|
from ..utils import DummyObject, requires_backends
|
|
|
|
|
|
|
|
|
|
|
|
CONSTANT = None
|
|
|
|
|
|
|
|
|
|
|
|
def function(*args, **kwargs):
|
|
|
|
requires_backends(function, ["torch"])
|
|
|
|
|
|
|
|
|
|
|
|
class FakeClass(metaclass=DummyObject):
|
|
|
|
_backends = ["torch"]
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
requires_backends(self, ["torch"])
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_config(cls, *args, **kwargs):
|
|
|
|
requires_backends(cls, ["torch"])
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_pretrained(cls, *args, **kwargs):
|
|
|
|
requires_backends(cls, ["torch"])
|
|
|
|
"""
|
|
|
|
dummy_files = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]})
|
|
|
|
self.assertEqual(dummy_files["torch"], expected_dummy_pytorch_file)
|