diffusers/examples/text_to_image/train_text_to_image.py

711 lines
28 KiB
Python
Raw Normal View History

stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
import argparse
import logging
import math
import os
import random
from pathlib import Path
from typing import Iterable, Optional
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-model-finetuned",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
action="store_true",
help="Whether to center crop images before resizing to resolution (if not set, random crop will be used)",
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("Need either a dataset name or a training folder.")
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
dataset_name_mapping = {
"lambdalabs/pokemon-blip-captions": ("image", "text"),
}
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
class EMAModel:
"""
Exponential Moving Average of models weights
"""
def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
parameters = list(parameters)
self.shadow_params = [p.clone().detach() for p in parameters]
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
self.decay = decay
self.optimization_step = 0
def get_decay(self, optimization_step):
"""
Compute the decay factor for the exponential moving average.
"""
value = (1 + optimization_step) / (10 + optimization_step)
return 1 - min(self.decay, value)
@torch.no_grad()
def step(self, parameters):
parameters = list(parameters)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
self.optimization_step += 1
self.decay = self.get_decay(self.optimization_step)
for s_param, param in zip(self.shadow_params, parameters):
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
if param.requires_grad:
tmp = self.decay * (s_param - param)
s_param.sub_(tmp)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
else:
s_param.copy_(param)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
torch.cuda.empty_cache()
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
parameters = list(parameters)
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.data)
def to(self, device=None, dtype=None) -> None:
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
Args:
device: like `device` argument to `torch.Tensor.to`
"""
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
for p in self.shadow_params
]
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
logging_dir=logging_dir,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load models and create wrapper for stable diffusion
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
if is_xformers_available():
try:
unet.enable_xformers_memory_efficient_attention()
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
unet.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
)
else:
data_files = {}
if args.train_data_dir is not None:
data_files["train"] = os.path.join(args.train_data_dir, "**")
dataset = load_dataset(
"imagefolder",
data_files=data_files,
cache_dir=args.cache_dir,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
dataset_columns = dataset_name_mapping.get(args.dataset_name, None)
if args.image_column is None:
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
image_column = args.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
)
if args.caption_column is None:
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
caption_column = args.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
)
# Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="do_not_pad", truncation=True)
input_ids = inputs.input_ids
return input_ids
train_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["pixel_values"] = [train_transforms(image) for image in images]
examples["input_ids"] = tokenize_captions(examples)
return examples
with accelerator.main_process_first():
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = [example["input_ids"] for example in examples]
padded_tokens = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt")
return {
"pixel_values": pixel_values,
"input_ids": padded_tokens.input_ids,
"attention_mask": padded_tokens.attention_mask,
}
train_dataloader = torch.utils.data.DataLoader(
train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
accelerator.register_for_checkpointing(lr_scheduler)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# Create EMA for the unet.
if args.use_ema:
ema_unet = EMAModel(unet.parameters())
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2image-fine-tune", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1]
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = resume_global_step // num_update_steps_per_epoch
resume_step = resume_global_step % num_update_steps_per_epoch
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
progress_bar.set_description("Steps")
for epoch in range(first_epoch, args.num_train_epochs):
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
unet.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
# Predict the noise residual and compute loss
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
if args.use_ema:
ema_unet.step(unet.parameters())
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = accelerator.unwrap_model(unet)
if args.use_ema:
ema_unet.copy_to(unet.parameters())
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
text_encoder=text_encoder,
vae=vae,
unet=unet,
revision=args.revision,
stable diffusion fine-tuning (#356) * begin text2image script * loading the datasets, preprocessing & transforms * handle input features correctly * add gradient checkpointing support * fix output names * run unet in train mode not text encoder * use no_grad instead of freezing params * default max steps None * pad to longest * don't pad when tokenizing * fix encode on multi gpu * fix stupid bug * add random flip * add ema * fix ema * put ema on cpu * improve EMA model * contiguous_format * don't warp vae and text encode in accelerate * remove no_grad * use randn_like * fix resize * improve few things * log epoch loss * set log level * don't log each step * remove max_length from collate * style * add report_to option * make scale_lr false by default * add grad clipping * add an option to use 8bit adam * fix logging in multi-gpu, log every step * more comments * remove eval for now * adress review comments * add requirements file * begin readme * begin readme * fix typo * fix push to hub * populate readme * update readme * remove use_auth_token from the script * address some review comments * better mixed precision support * remove redundant to * create ema model early * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * better description for train_data_dir * add diffusers in requirements * update dataset_name_mapping * update readme * add inference example Co-authored-by: anton-l <anton@huggingface.co> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-11 11:03:39 -06:00
)
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
accelerator.end_training()
if __name__ == "__main__":
main()