2022-10-24 08:34:01 -06:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel
|
|
|
|
from diffusers.utils.testing_utils import require_torch, slow, torch_device
|
|
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
|
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
|
|
|
|
|
|
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
|
|
@property
|
|
|
|
def dummy_cond_unet(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = UNet2DConditionModel(
|
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=4,
|
|
|
|
out_channels=4,
|
|
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
|
|
cross_attention_dim=32,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_vae(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = AutoencoderKL(
|
|
|
|
block_out_channels=[32, 64],
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
|
|
latent_channels=4,
|
|
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_text_encoder(self):
|
|
|
|
torch.manual_seed(0)
|
|
|
|
config = CLIPTextConfig(
|
|
|
|
bos_token_id=0,
|
|
|
|
eos_token_id=2,
|
|
|
|
hidden_size=32,
|
|
|
|
intermediate_size=37,
|
|
|
|
layer_norm_eps=1e-05,
|
|
|
|
num_attention_heads=4,
|
|
|
|
num_hidden_layers=5,
|
|
|
|
pad_token_id=1,
|
|
|
|
vocab_size=1000,
|
|
|
|
)
|
|
|
|
return CLIPTextModel(config)
|
|
|
|
|
|
|
|
def test_inference_text2img(self):
|
|
|
|
unet = self.dummy_cond_unet
|
|
|
|
scheduler = DDIMScheduler()
|
|
|
|
vae = self.dummy_vae
|
|
|
|
bert = self.dummy_text_encoder
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
|
|
|
|
ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
|
|
|
|
ldm.to(torch_device)
|
|
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
|
|
|
|
# Warmup pass when using mps (see #372)
|
|
|
|
if torch_device == "mps":
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
_ = ldm(
|
|
|
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy"
|
|
|
|
).images
|
|
|
|
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
image = ldm(
|
|
|
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy"
|
|
|
|
).images
|
|
|
|
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
image_from_tuple = ldm(
|
|
|
|
[prompt],
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=6.0,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="numpy",
|
|
|
|
return_dict=False,
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
|
|
|
|
@slow
|
|
|
|
@require_torch
|
|
|
|
class LDMTextToImagePipelineIntegrationTests(unittest.TestCase):
|
|
|
|
def test_inference_text2img(self):
|
2022-11-03 10:25:57 -06:00
|
|
|
ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
|
2022-10-24 08:34:01 -06:00
|
|
|
ldm.to(torch_device)
|
|
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
image = ldm(
|
|
|
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy"
|
|
|
|
).images
|
|
|
|
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
|
|
expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
|
|
def test_inference_text2img_fast(self):
|
2022-11-03 10:25:57 -06:00
|
|
|
ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
|
2022-10-24 08:34:01 -06:00
|
|
|
ldm.to(torch_device)
|
|
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
|
|
|
|
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
|
|
expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|