2022-12-05 06:36:55 -07:00
|
|
|
import glob
|
|
|
|
import os
|
|
|
|
from typing import Dict, List, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from diffusers import DiffusionPipeline, __version__
|
2023-01-10 07:11:50 -07:00
|
|
|
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
|
|
|
|
from diffusers.utils import CONFIG_NAME, DIFFUSERS_CACHE, ONNX_WEIGHTS_NAME, WEIGHTS_NAME
|
2022-12-05 06:36:55 -07:00
|
|
|
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
class CheckpointMergerPipeline(DiffusionPipeline):
|
|
|
|
"""
|
|
|
|
A class that that supports merging diffusion models based on the discussion here:
|
|
|
|
https://github.com/huggingface/diffusers/issues/877
|
|
|
|
|
|
|
|
Example usage:-
|
|
|
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py")
|
|
|
|
|
|
|
|
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True)
|
|
|
|
|
|
|
|
merged_pipe.to('cuda')
|
|
|
|
|
|
|
|
prompt = "An astronaut riding a unicycle on Mars"
|
|
|
|
|
|
|
|
results = merged_pipe(prompt)
|
|
|
|
|
|
|
|
## For more details, see the docstring for the merge method.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
2023-01-16 06:25:25 -07:00
|
|
|
self.register_to_config()
|
2022-12-05 06:36:55 -07:00
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def _compare_model_configs(self, dict0, dict1):
|
|
|
|
if dict0 == dict1:
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
config0, meta_keys0 = self._remove_meta_keys(dict0)
|
|
|
|
config1, meta_keys1 = self._remove_meta_keys(dict1)
|
|
|
|
if config0 == config1:
|
|
|
|
print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.")
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def _remove_meta_keys(self, config_dict: Dict):
|
|
|
|
meta_keys = []
|
|
|
|
temp_dict = config_dict.copy()
|
|
|
|
for key in config_dict.keys():
|
|
|
|
if key.startswith("_"):
|
|
|
|
temp_dict.pop(key)
|
|
|
|
meta_keys.append(key)
|
|
|
|
return (temp_dict, meta_keys)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs):
|
|
|
|
"""
|
|
|
|
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
|
|
|
|
in the argument 'pretrained_model_name_or_path_list' as a list.
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
-----------
|
|
|
|
pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format.
|
|
|
|
|
|
|
|
**kwargs:
|
|
|
|
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
|
|
|
|
|
|
|
|
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map.
|
|
|
|
|
|
|
|
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
|
|
|
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
|
|
|
|
|
|
|
interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
|
|
|
|
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
|
|
|
|
|
|
|
|
force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
|
|
|
|
|
|
|
"""
|
|
|
|
# Default kwargs from DiffusionPipeline
|
|
|
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
|
|
|
resume_download = kwargs.pop("resume_download", False)
|
|
|
|
force_download = kwargs.pop("force_download", False)
|
|
|
|
proxies = kwargs.pop("proxies", None)
|
|
|
|
local_files_only = kwargs.pop("local_files_only", False)
|
|
|
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
|
|
|
revision = kwargs.pop("revision", None)
|
|
|
|
torch_dtype = kwargs.pop("torch_dtype", None)
|
|
|
|
device_map = kwargs.pop("device_map", None)
|
|
|
|
|
|
|
|
alpha = kwargs.pop("alpha", 0.5)
|
|
|
|
interp = kwargs.pop("interp", None)
|
|
|
|
|
|
|
|
print("Recieved list", pretrained_model_name_or_path_list)
|
|
|
|
|
|
|
|
checkpoint_count = len(pretrained_model_name_or_path_list)
|
|
|
|
# Ignore result from model_index_json comparision of the two checkpoints
|
|
|
|
force = kwargs.pop("force", False)
|
|
|
|
|
|
|
|
# If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now.
|
|
|
|
if checkpoint_count > 3 or checkpoint_count < 2:
|
|
|
|
raise ValueError(
|
|
|
|
"Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being"
|
|
|
|
" passed."
|
|
|
|
)
|
|
|
|
|
|
|
|
print("Received the right number of checkpoints")
|
|
|
|
# chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2]
|
|
|
|
# chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None
|
|
|
|
|
|
|
|
# Validate that the checkpoints can be merged
|
|
|
|
# Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_'
|
|
|
|
config_dicts = []
|
|
|
|
for pretrained_model_name_or_path in pretrained_model_name_or_path_list:
|
|
|
|
if not os.path.isdir(pretrained_model_name_or_path):
|
|
|
|
config_dict = DiffusionPipeline.get_config_dict(
|
|
|
|
pretrained_model_name_or_path,
|
|
|
|
cache_dir=cache_dir,
|
|
|
|
resume_download=resume_download,
|
|
|
|
force_download=force_download,
|
|
|
|
proxies=proxies,
|
|
|
|
local_files_only=local_files_only,
|
|
|
|
use_auth_token=use_auth_token,
|
|
|
|
revision=revision,
|
|
|
|
)
|
|
|
|
config_dicts.append(config_dict)
|
|
|
|
|
|
|
|
comparison_result = True
|
|
|
|
for idx in range(1, len(config_dicts)):
|
|
|
|
comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx])
|
|
|
|
if not force and comparison_result is False:
|
|
|
|
raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.")
|
|
|
|
print(config_dicts[0], config_dicts[1])
|
|
|
|
print("Compatible model_index.json files found")
|
|
|
|
# Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files.
|
|
|
|
cached_folders = []
|
|
|
|
for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts):
|
|
|
|
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
|
|
|
|
allow_patterns = [os.path.join(k, "*") for k in folder_names]
|
|
|
|
allow_patterns += [
|
|
|
|
WEIGHTS_NAME,
|
|
|
|
SCHEDULER_CONFIG_NAME,
|
|
|
|
CONFIG_NAME,
|
|
|
|
ONNX_WEIGHTS_NAME,
|
|
|
|
DiffusionPipeline.config_name,
|
|
|
|
]
|
|
|
|
requested_pipeline_class = config_dict.get("_class_name")
|
|
|
|
user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class}
|
|
|
|
|
|
|
|
cached_folder = snapshot_download(
|
|
|
|
pretrained_model_name_or_path,
|
|
|
|
cache_dir=cache_dir,
|
|
|
|
resume_download=resume_download,
|
|
|
|
proxies=proxies,
|
|
|
|
local_files_only=local_files_only,
|
|
|
|
use_auth_token=use_auth_token,
|
|
|
|
revision=revision,
|
|
|
|
allow_patterns=allow_patterns,
|
|
|
|
user_agent=user_agent,
|
|
|
|
)
|
|
|
|
print("Cached Folder", cached_folder)
|
|
|
|
cached_folders.append(cached_folder)
|
|
|
|
|
|
|
|
# Step 3:-
|
|
|
|
# Load the first checkpoint as a diffusion pipeline and modify it's module state_dict in place
|
|
|
|
final_pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
cached_folders[0], torch_dtype=torch_dtype, device_map=device_map
|
|
|
|
)
|
2023-01-16 06:25:25 -07:00
|
|
|
final_pipe.to(self.device)
|
2022-12-05 06:36:55 -07:00
|
|
|
|
|
|
|
checkpoint_path_2 = None
|
|
|
|
if len(cached_folders) > 2:
|
|
|
|
checkpoint_path_2 = os.path.join(cached_folders[2])
|
|
|
|
|
|
|
|
if interp == "sigmoid":
|
|
|
|
theta_func = CheckpointMergerPipeline.sigmoid
|
|
|
|
elif interp == "inv_sigmoid":
|
|
|
|
theta_func = CheckpointMergerPipeline.inv_sigmoid
|
|
|
|
elif interp == "add_diff":
|
|
|
|
theta_func = CheckpointMergerPipeline.add_difference
|
|
|
|
else:
|
|
|
|
theta_func = CheckpointMergerPipeline.weighted_sum
|
|
|
|
|
|
|
|
# Find each module's state dict.
|
|
|
|
for attr in final_pipe.config.keys():
|
|
|
|
if not attr.startswith("_"):
|
|
|
|
checkpoint_path_1 = os.path.join(cached_folders[1], attr)
|
|
|
|
if os.path.exists(checkpoint_path_1):
|
|
|
|
files = glob.glob(os.path.join(checkpoint_path_1, "*.bin"))
|
|
|
|
checkpoint_path_1 = files[0] if len(files) > 0 else None
|
|
|
|
if checkpoint_path_2 is not None and os.path.exists(checkpoint_path_2):
|
|
|
|
files = glob.glob(os.path.join(checkpoint_path_2, "*.bin"))
|
|
|
|
checkpoint_path_2 = files[0] if len(files) > 0 else None
|
|
|
|
# For an attr if both checkpoint_path_1 and 2 are None, ignore.
|
|
|
|
# If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match.
|
|
|
|
if checkpoint_path_1 is None and checkpoint_path_2 is None:
|
|
|
|
print("SKIPPING ATTR ", attr)
|
|
|
|
continue
|
|
|
|
try:
|
|
|
|
module = getattr(final_pipe, attr)
|
|
|
|
theta_0 = getattr(module, "state_dict")
|
|
|
|
theta_0 = theta_0()
|
|
|
|
|
|
|
|
update_theta_0 = getattr(module, "load_state_dict")
|
2023-01-16 06:25:25 -07:00
|
|
|
theta_1 = torch.load(checkpoint_path_1, map_location="cpu")
|
2022-12-05 06:36:55 -07:00
|
|
|
|
2023-01-16 06:25:25 -07:00
|
|
|
theta_2 = torch.load(checkpoint_path_2, map_location="cpu") if checkpoint_path_2 else None
|
2022-12-05 06:36:55 -07:00
|
|
|
|
|
|
|
if not theta_0.keys() == theta_1.keys():
|
|
|
|
print("SKIPPING ATTR ", attr, " DUE TO MISMATCH")
|
|
|
|
continue
|
|
|
|
if theta_2 and not theta_1.keys() == theta_2.keys():
|
|
|
|
print("SKIPPING ATTR ", attr, " DUE TO MISMATCH")
|
|
|
|
except:
|
|
|
|
print("SKIPPING ATTR ", attr)
|
|
|
|
continue
|
|
|
|
print("Found dicts for")
|
|
|
|
print(attr)
|
|
|
|
print(checkpoint_path_1)
|
|
|
|
print(checkpoint_path_2)
|
|
|
|
|
|
|
|
for key in theta_0.keys():
|
|
|
|
if theta_2:
|
|
|
|
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha)
|
|
|
|
else:
|
|
|
|
theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha)
|
|
|
|
|
|
|
|
del theta_1
|
|
|
|
del theta_2
|
|
|
|
update_theta_0(theta_0)
|
|
|
|
|
|
|
|
del theta_0
|
|
|
|
print("Diffusion pipeline successfully updated with merged weights")
|
|
|
|
|
|
|
|
return final_pipe
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def weighted_sum(theta0, theta1, theta2, alpha):
|
|
|
|
return ((1 - alpha) * theta0) + (alpha * theta1)
|
|
|
|
|
|
|
|
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
|
|
|
|
@staticmethod
|
|
|
|
def sigmoid(theta0, theta1, theta2, alpha):
|
|
|
|
alpha = alpha * alpha * (3 - (2 * alpha))
|
|
|
|
return theta0 + ((theta1 - theta0) * alpha)
|
|
|
|
|
|
|
|
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
|
|
|
|
@staticmethod
|
|
|
|
def inv_sigmoid(theta0, theta1, theta2, alpha):
|
|
|
|
import math
|
|
|
|
|
|
|
|
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
|
|
|
|
return theta0 + ((theta1 - theta0) * alpha)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def add_difference(theta0, theta1, theta2, alpha):
|
|
|
|
return theta0 + (theta1 - theta2) * (1.0 - alpha)
|