2022-05-31 06:27:59 -06:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import random
|
|
|
|
import tempfile
|
|
|
|
import unittest
|
2022-06-06 09:03:41 -06:00
|
|
|
import os
|
|
|
|
from distutils.util import strtobool
|
2022-05-31 06:27:59 -06:00
|
|
|
|
|
|
|
import torch
|
|
|
|
|
2022-06-06 09:03:41 -06:00
|
|
|
from diffusers import GaussianDDPMScheduler, UNetModel
|
2022-05-31 06:27:59 -06:00
|
|
|
|
|
|
|
|
|
|
|
global_rng = random.Random()
|
2022-06-06 09:03:41 -06:00
|
|
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
def parse_flag_from_env(key, default=False):
|
|
|
|
try:
|
|
|
|
value = os.environ[key]
|
|
|
|
except KeyError:
|
|
|
|
# KEY isn't set, default to `default`.
|
|
|
|
_value = default
|
|
|
|
else:
|
|
|
|
# KEY is set, convert it to True or False.
|
|
|
|
try:
|
|
|
|
_value = strtobool(value)
|
|
|
|
except ValueError:
|
|
|
|
# More values are supported, but let's keep the message simple.
|
|
|
|
raise ValueError(f"If set, {key} must be yes or no.")
|
|
|
|
return _value
|
|
|
|
|
|
|
|
|
|
|
|
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
|
|
|
|
|
|
|
|
|
|
|
|
def slow(test_case):
|
|
|
|
"""
|
|
|
|
Decorator marking a test as slow.
|
|
|
|
|
|
|
|
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
|
|
|
|
|
|
|
|
"""
|
|
|
|
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
|
2022-05-31 06:27:59 -06:00
|
|
|
|
|
|
|
|
|
|
|
def floats_tensor(shape, scale=1.0, rng=None, name=None):
|
|
|
|
"""Creates a random float32 tensor"""
|
|
|
|
if rng is None:
|
|
|
|
rng = global_rng
|
|
|
|
|
|
|
|
total_dims = 1
|
|
|
|
for dim in shape:
|
|
|
|
total_dims *= dim
|
|
|
|
|
|
|
|
values = []
|
|
|
|
for _ in range(total_dims):
|
|
|
|
values.append(rng.random() * scale)
|
|
|
|
|
|
|
|
return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()
|
|
|
|
|
|
|
|
|
|
|
|
class ModelTesterMixin(unittest.TestCase):
|
2022-05-31 06:46:20 -06:00
|
|
|
@property
|
|
|
|
def dummy_input(self):
|
2022-06-07 07:03:53 -06:00
|
|
|
batch_size = 4
|
2022-05-31 06:46:20 -06:00
|
|
|
num_channels = 3
|
|
|
|
sizes = (32, 32)
|
|
|
|
|
|
|
|
noise = floats_tensor((batch_size, num_channels) + sizes)
|
|
|
|
time_step = torch.tensor([10])
|
|
|
|
|
|
|
|
return (noise, time_step)
|
|
|
|
|
2022-05-31 06:27:59 -06:00
|
|
|
def test_from_pretrained_save_pretrained(self):
|
2022-06-06 09:03:41 -06:00
|
|
|
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
|
2022-05-31 06:27:59 -06:00
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
new_model = UNetModel.from_pretrained(tmpdirname)
|
|
|
|
|
2022-05-31 06:46:20 -06:00
|
|
|
dummy_input = self.dummy_input
|
2022-05-31 06:27:59 -06:00
|
|
|
|
2022-05-31 06:46:20 -06:00
|
|
|
image = model(*dummy_input)
|
|
|
|
new_image = new_model(*dummy_input)
|
2022-05-31 06:27:59 -06:00
|
|
|
|
|
|
|
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
|
2022-05-31 06:46:20 -06:00
|
|
|
|
|
|
|
def test_from_pretrained_hub(self):
|
|
|
|
model = UNetModel.from_pretrained("fusing/ddpm_dummy")
|
|
|
|
|
|
|
|
image = model(*self.dummy_input)
|
|
|
|
|
|
|
|
assert image is not None, "Make sure output is not None"
|
2022-06-01 16:25:48 -06:00
|
|
|
|
|
|
|
|
|
|
|
class SamplerTesterMixin(unittest.TestCase):
|
|
|
|
|
2022-06-06 09:03:41 -06:00
|
|
|
@slow
|
|
|
|
def test_sample(self):
|
|
|
|
generator = torch.Generator()
|
|
|
|
generator = generator.manual_seed(6694729458485568)
|
|
|
|
|
|
|
|
# 1. Load models
|
|
|
|
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
|
|
|
|
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
|
|
|
|
|
|
|
|
# 2. Sample gaussian noise
|
|
|
|
image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
|
|
|
|
|
|
|
|
# 3. Denoise
|
|
|
|
for t in reversed(range(len(scheduler))):
|
|
|
|
# i) define coefficients for time step t
|
|
|
|
clip_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
|
|
|
|
clip_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
|
|
|
|
image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
|
|
|
|
clip_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
|
|
|
|
|
|
|
|
# ii) predict noise residual
|
|
|
|
with torch.no_grad():
|
|
|
|
noise_residual = model(image, t)
|
|
|
|
|
|
|
|
# iii) compute predicted image from residual
|
|
|
|
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
|
|
|
|
pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual
|
|
|
|
pred_mean = torch.clamp(pred_mean, -1, 1)
|
|
|
|
prev_image = clip_coeff * pred_mean + image_coeff * image
|
|
|
|
|
|
|
|
# iv) sample variance
|
|
|
|
prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
|
|
|
|
|
|
|
|
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
|
|
|
|
sampled_prev_image = prev_image + prev_variance
|
|
|
|
image = sampled_prev_image
|
|
|
|
|
|
|
|
# Note: The better test is to simply check with the following lines of code that the image is sensible
|
|
|
|
# import PIL
|
|
|
|
# import numpy as np
|
|
|
|
# image_processed = image.cpu().permute(0, 2, 3, 1)
|
|
|
|
# image_processed = (image_processed + 1.0) * 127.5
|
|
|
|
# image_processed = image_processed.numpy().astype(np.uint8)
|
|
|
|
# image_pil = PIL.Image.fromarray(image_processed[0])
|
|
|
|
# image_pil.save("test.png")
|
|
|
|
|
|
|
|
assert image.shape == (1, 3, 256, 256)
|
|
|
|
image_slice = image[0, -1, -3:, -3:].cpu()
|
|
|
|
assert (image_slice - torch.tensor([[-0.0598, -0.0611, -0.0506], [-0.0726, 0.0220, 0.0103], [-0.0723, -0.1310, -0.2458]])).abs().sum() < 1e-3
|
|
|
|
|
|
|
|
def test_sample_fast(self):
|
|
|
|
# 1. Load models
|
|
|
|
generator = torch.Generator()
|
|
|
|
generator = generator.manual_seed(6694729458485568)
|
|
|
|
|
|
|
|
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
|
|
|
|
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
|
|
|
|
|
|
|
|
# 2. Sample gaussian noise
|
2022-06-01 16:25:48 -06:00
|
|
|
torch.manual_seed(0)
|
2022-06-06 09:03:41 -06:00
|
|
|
image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
|
|
|
|
|
|
|
|
# 3. Denoise
|
|
|
|
for t in reversed(range(len(scheduler))):
|
|
|
|
# i) define coefficients for time step t
|
|
|
|
clip_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
|
|
|
|
clip_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
|
|
|
|
image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
|
|
|
|
clip_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
|
|
|
|
|
|
|
|
# ii) predict noise residual
|
|
|
|
with torch.no_grad():
|
|
|
|
noise_residual = model(image, t)
|
|
|
|
|
|
|
|
# iii) compute predicted image from residual
|
|
|
|
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
|
|
|
|
pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual
|
|
|
|
pred_mean = torch.clamp(pred_mean, -1, 1)
|
|
|
|
prev_image = clip_coeff * pred_mean + image_coeff * image
|
|
|
|
|
|
|
|
# iv) sample variance
|
|
|
|
prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
|
|
|
|
|
|
|
|
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
|
|
|
|
sampled_prev_image = prev_image + prev_variance
|
|
|
|
image = sampled_prev_image
|
|
|
|
|
|
|
|
assert image.shape == (1, 3, 256, 256)
|
|
|
|
image_slice = image[0, -1, -3:, -3:].cpu()
|
|
|
|
assert (image_slice - torch.tensor([[0.1746, 0.5125, -0.7920], [-0.5734, -0.2910, -0.1984], [0.4090, -0.7740, -0.3941]])).abs().sum() < 1e-3
|