Add tests for Stable Diffusion 2 V-prediction 768x768 (#1420)

This commit is contained in:
Anton Lozhkov 2022-11-25 15:14:13 +01:00 committed by GitHub
parent 8faa822ddc
commit 02aa4ef12e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 495 additions and 28 deletions

View File

@ -34,7 +34,7 @@ from diffusers import (
)
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
from transformers import CLIPFeatureExtractor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
@ -100,21 +100,6 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_save_pretrained_from_pretrained(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
@ -129,7 +114,6 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
feature_extractor = CLIPFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
@ -139,7 +123,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=feature_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
@ -185,7 +170,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
@ -231,7 +217,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
@ -276,7 +263,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
@ -321,7 +309,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
@ -366,7 +355,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
@ -411,7 +401,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
@ -449,7 +440,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
@ -475,7 +467,8 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
@ -572,7 +565,7 @@ class StableDiffusion2PipelineIntegrationTests(unittest.TestCase):
expected_slice = np.array([0.0548, 0.0626, 0.0612, 0.0611, 0.0706, 0.0586, 0.0843, 0.0333, 0.1197])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_memory_chunking(self):
def test_stable_diffusion_attention_slicing(self):
torch.cuda.reset_peak_memory_stats()
model_id = "stabilityai/stable-diffusion-2-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
@ -651,7 +644,7 @@ class StableDiffusion2PipelineIntegrationTests(unittest.TestCase):
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(prompt=prompt, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np")
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (512, 512, 3)

View File

@ -0,0 +1,474 @@
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import time
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusion2VPredictionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4, 8, 8),
use_linear_projection=True,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=64,
)
return CLIPTextModel(config)
def test_stable_diffusion_v_pred_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
prediction_type="v_prediction",
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6424, 0.6109, 0.494, 0.5088, 0.4984, 0.4525, 0.5059, 0.5068, 0.4474])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_k_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = EulerDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", prediction_type="v_prediction"
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4616, 0.5184, 0.4887, 0.5111, 0.4839, 0.48, 0.5119, 0.5263, 0.4776])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_v_pred_fp16(self):
"""Test that stable diffusion v-prediction works with fp16"""
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
prediction_type="v_prediction",
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch_gpu
class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_v_pred_default(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.0567, 0.057, 0.0416, 0.0463, 0.0433, 0.06, 0.0517, 0.0526, 0.0866])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_euler(self):
scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler")
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="numpy")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.0351, 0.0376, 0.0505, 0.0424, 0.0551, 0.0656, 0.0471, 0.0276, 0.0596])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_dpm(self):
"""
TODO: update this test after making DPM compatible with V-prediction!
"""
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"stabilityai/stable-diffusion-2", subfolder="scheduler"
)
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.enable_attention_slicing()
sd_pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_attention_slicing_v_pred(self):
torch.cuda.reset_peak_memory_stats()
model_id = "stabilityai/stable-diffusion-2"
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
# make attention efficient
pipe.enable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# make sure that less than 5.5 GB is allocated
assert mem_bytes < 5.5 * 10**9
# disable slicing
pipe.disable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
# make sure that more than 5.5 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 5.5 * 10**9
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3
def test_stable_diffusion_text2img_pipeline_v_pred_default(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"sd2-text2img/astronaut_riding_a_horse_v_pred.npy"
)
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
pipe.to(torch_device)
pipe.enable_attention_slicing()
pipe.set_progress_bar_config(disable=None)
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert np.abs(expected_image - image).max() < 5e-3
def test_stable_diffusion_text2img_pipeline_v_pred_fp16(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"sd2-text2img/astronaut_riding_a_horse_v_pred_fp16.npy"
)
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert np.abs(expected_image - image).max() < 5e-3
def test_stable_diffusion_text2img_intermediate_state_v_pred(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 96, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.2543, -1.2755, 0.4261, -0.9555, -1.173, -0.5892, 2.4159, 0.1554, -1.2098]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
elif step == 19:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 96, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.9572, -0.967, -0.6152, 0.0894, -0.699, -0.2344, 1.5465, -0.0357, -0.1141]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
test_callback_fn.has_been_called = False
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Andromeda galaxy in a bottle"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
pipe(
prompt=prompt,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 20
def test_stable_diffusion_low_cpu_mem_usage_v_pred(self):
pipeline_id = "stabilityai/stable-diffusion-2"
start_time = time.time()
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(
pipeline_id, revision="fp16", torch_dtype=torch.float16
)
pipeline_low_cpu_mem_usage.to(torch_device)
low_cpu_mem_usage_time = time.time() - start_time
start_time = time.time()
_ = StableDiffusionPipeline.from_pretrained(
pipeline_id, revision="fp16", torch_dtype=torch.float16, low_cpu_mem_usage=False
)
normal_load_time = time.time() - start_time
assert 2 * low_cpu_mem_usage_time < normal_load_time
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading_v_pred(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipeline_id = "stabilityai/stable-diffusion-2"
prompt = "Andromeda galaxy in a bottle"
pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, revision="fp16", torch_dtype=torch.float16)
pipeline = pipeline.to(torch_device)
pipeline.enable_attention_slicing(1)
pipeline.enable_sequential_cpu_offload()
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipeline(prompt, generator=generator, num_inference_steps=5)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.8 GB is allocated
assert mem_bytes < 2.8 * 10**9