add pndm
This commit is contained in:
parent
730741862f
commit
13c5a0654f
|
@ -0,0 +1,27 @@
|
|||
#!/usr/bin/env python3
|
||||
from diffusers import PNDM, UNetModel, PNDMScheduler
|
||||
import PIL.Image
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
model_id = "fusing/ddim-celeba-hq"
|
||||
|
||||
model = UNetModel.from_pretrained(model_id)
|
||||
scheduler = PNDMScheduler()
|
||||
|
||||
# load model and scheduler
|
||||
ddpm = PNDM(unet=model, noise_scheduler=scheduler)
|
||||
|
||||
# run pipeline in inference (sample random noise and denoise)
|
||||
image = ddpm()
|
||||
|
||||
# process image to PIL
|
||||
image_processed = image.cpu().permute(0, 2, 3, 1)
|
||||
image_processed = (image_processed + 1.0) / 2
|
||||
image_processed = torch.clamp(image_processed, 0.0, 1.0)
|
||||
image_processed = image_processed * 255
|
||||
image_processed = image_processed.numpy().astype(np.uint8)
|
||||
image_pil = PIL.Image.fromarray(image_processed[0])
|
||||
|
||||
# save image
|
||||
image_pil.save("/home/patrick/images/test.png")
|
|
@ -9,6 +9,6 @@ from .models.unet import UNetModel
|
|||
from .models.unet_glide import GLIDESuperResUNetModel, GLIDETextToImageUNetModel
|
||||
from .models.unet_ldm import UNetLDMModel
|
||||
from .pipeline_utils import DiffusionPipeline
|
||||
from .pipelines import DDIM, DDPM, GLIDE, LatentDiffusion
|
||||
from .schedulers import DDIMScheduler, DDPMScheduler, SchedulerMixin
|
||||
from .pipelines import DDIM, DDPM, GLIDE, LatentDiffusion, PNDM
|
||||
from .schedulers import DDIMScheduler, DDPMScheduler, SchedulerMixin, PNDMScheduler
|
||||
from .schedulers.classifier_free_guidance import ClassifierFreeGuidanceScheduler
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from .pipeline_ddim import DDIM
|
||||
from .pipeline_ddpm import DDPM
|
||||
from .pipeline_pndm import PNDM
|
||||
from .pipeline_glide import GLIDE
|
||||
from .pipeline_latent_diffusion import LatentDiffusion
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
|
||||
import tqdm
|
||||
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
|
||||
|
||||
class PNDM(DiffusionPipeline):
|
||||
def __init__(self, unet, noise_scheduler):
|
||||
super().__init__()
|
||||
noise_scheduler = noise_scheduler.set_format("pt")
|
||||
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
|
||||
|
||||
def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50):
|
||||
# eta corresponds to η in paper and should be between [0, 1]
|
||||
if torch_device is None:
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
num_trained_timesteps = self.noise_scheduler.timesteps
|
||||
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
|
||||
|
||||
self.unet.to(torch_device)
|
||||
|
||||
# Sample gaussian noise to begin loop
|
||||
image = torch.randn(
|
||||
(batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
|
||||
# generator=torch.manual_seed(0)
|
||||
)
|
||||
image = image.to(torch_device)
|
||||
|
||||
seq = inference_step_times
|
||||
seq_next = [-1] + list(seq[:-1])
|
||||
model = self.unet
|
||||
|
||||
ets = []
|
||||
for i, j in zip(reversed(seq), reversed(seq_next)):
|
||||
t = (torch.ones(image.shape[0]) * i)
|
||||
t_next = (torch.ones(image.shape[0]) * j)
|
||||
|
||||
with torch.no_grad():
|
||||
t_start, t_end = t_next, t
|
||||
img_next, ets = self.noise_scheduler.step(image, t_start, t_end, model, ets)
|
||||
|
||||
image = img_next
|
||||
|
||||
return image
|
||||
|
||||
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
||||
# Ideally, read DDIM paper in-detail understanding
|
||||
|
||||
# Notation (<variable name> -> <name in paper>
|
||||
# - pred_noise_t -> e_theta(x_t, t)
|
||||
# - pred_original_image -> f_theta(x_t, t) or x_0
|
||||
# - std_dev_t -> sigma_t
|
||||
# - eta -> η
|
||||
# - pred_image_direction -> "direction pointingc to x_t"
|
||||
# - pred_prev_image -> "x_t-1"
|
||||
# for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
|
||||
# 1. predict noise residual
|
||||
# with torch.no_grad():
|
||||
# residual = self.unet(image, inference_step_times[t])
|
||||
#
|
||||
# 2. predict previous mean of image x_t-1
|
||||
# pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta)
|
||||
#
|
||||
# 3. optionally sample variance
|
||||
# variance = 0
|
||||
# if eta > 0:
|
||||
# noise = torch.randn(image.shape, generator=generator).to(image.device)
|
||||
# variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
|
||||
#
|
||||
# 4. set current image to prev_image: x_t -> x_t-1
|
||||
# image = pred_prev_image + variance
|
|
@ -19,4 +19,5 @@
|
|||
from .classifier_free_guidance import ClassifierFreeGuidanceScheduler
|
||||
from .scheduling_ddim import DDIMScheduler
|
||||
from .scheduling_ddpm import DDPMScheduler
|
||||
from .scheduling_pndm import PNDMScheduler
|
||||
from .scheduling_utils import SchedulerMixin
|
||||
|
|
|
@ -1,341 +0,0 @@
|
|||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from .schedulers_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule
|
||||
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
||||
|
||||
|
||||
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||||
if ddim_discr_method == "uniform":
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
elif ddim_discr_method == "quad":
|
||||
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2).astype(int)
|
||||
else:
|
||||
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||||
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
steps_out = ddim_timesteps + 1
|
||||
if verbose:
|
||||
print(f"Selected timesteps for ddim sampler: {steps_out}")
|
||||
return steps_out
|
||||
|
||||
|
||||
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||
# select alphas for computing the variance schedule
|
||||
alphas = alphacums[ddim_timesteps]
|
||||
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||||
|
||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||
if verbose:
|
||||
print(f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}")
|
||||
print(
|
||||
f"For the chosen value of eta, which is {eta}, "
|
||||
f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
|
||||
)
|
||||
return sigmas, alphas, alphas_prev
|
||||
|
||||
|
||||
class PLMSSampler(object):
|
||||
def __init__(self, model, schedule="linear", **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device("cuda"):
|
||||
attr = attr.to(torch.device("cuda"))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True):
|
||||
if ddim_eta != 0:
|
||||
raise ValueError("ddim_eta must be 0 for PLMS")
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, "alphas have to be defined for each timestep"
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer("betas", to_torch(self.model.betas))
|
||||
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
||||
self.register_buffer("alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer("sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())))
|
||||
self.register_buffer("log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())))
|
||||
self.register_buffer("sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())))
|
||||
self.register_buffer("sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)))
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta, verbose=verbose
|
||||
)
|
||||
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
||||
self.register_buffer("ddim_alphas", ddim_alphas)
|
||||
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
||||
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer("ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f"Data shape for PLMS sampling is {size}")
|
||||
|
||||
samples, intermediates = self.plms_sampling(
|
||||
conditioning,
|
||||
size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
timesteps=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
||||
time_range = list(reversed(range(0, timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc="PLMS Sampler", total=total_steps)
|
||||
old_eps = []
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
outs = self.p_sample_plms(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps,
|
||||
t_next=ts_next,
|
||||
)
|
||||
img, pred_x0, e_t = outs
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates["x_inter"].append(img)
|
||||
intermediates["pred_x0"].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
old_eps=None,
|
||||
t_next=None,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
return e_t
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
|
||||
def get_x_prev_and_pred_x0(e_t, index):
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
e_t = get_model_output(x, t)
|
||||
if len(old_eps) == 0:
|
||||
# Pseudo Improved Euler (2nd order)
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||
e_t_next = get_model_output(x_prev, t_next)
|
||||
e_t_prime = (e_t + e_t_next) / 2
|
||||
elif len(old_eps) == 1:
|
||||
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||
elif len(old_eps) == 2:
|
||||
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||
elif len(old_eps) >= 3:
|
||||
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
return x_prev, pred_x0, e_t
|
|
@ -0,0 +1,138 @@
|
|||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule
|
||||
|
||||
|
||||
class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
||||
def __init__(
|
||||
self,
|
||||
timesteps=1000,
|
||||
beta_start=0.0001,
|
||||
beta_end=0.02,
|
||||
beta_schedule="linear",
|
||||
tensor_format="np",
|
||||
):
|
||||
super().__init__()
|
||||
self.register(
|
||||
timesteps=timesteps,
|
||||
beta_start=beta_start,
|
||||
beta_end=beta_end,
|
||||
beta_schedule=beta_schedule,
|
||||
)
|
||||
self.timesteps = int(timesteps)
|
||||
|
||||
if beta_schedule == "linear":
|
||||
self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# GLIDE cosine schedule
|
||||
self.betas = betas_for_alpha_bar(
|
||||
timesteps,
|
||||
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
|
||||
|
||||
self.one = np.array(1.0)
|
||||
|
||||
self.set_format(tensor_format=tensor_format)
|
||||
|
||||
# self.register_buffer("betas", betas.to(torch.float32))
|
||||
# self.register_buffer("alphas", alphas.to(torch.float32))
|
||||
# self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))
|
||||
|
||||
# alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
|
||||
# TODO(PVP) - check how much of these is actually necessary!
|
||||
# LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
|
||||
# https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
|
||||
# variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
|
||||
# if variance_type == "fixed_small":
|
||||
# log_variance = torch.log(variance.clamp(min=1e-20))
|
||||
# elif variance_type == "fixed_large":
|
||||
# log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
|
||||
#
|
||||
#
|
||||
# self.register_buffer("log_variance", log_variance.to(torch.float32))
|
||||
|
||||
def get_alpha(self, time_step):
|
||||
return self.alphas[time_step]
|
||||
|
||||
def get_beta(self, time_step):
|
||||
return self.betas[time_step]
|
||||
|
||||
def get_alpha_prod(self, time_step):
|
||||
if time_step < 0:
|
||||
return self.one
|
||||
return self.alphas_cumprod[time_step]
|
||||
|
||||
def step(self, img, t_start, t_end, model, ets):
|
||||
# img_next = self.method(img_n, t_start, t_end, model, self.alphas_cump, self.ets)
|
||||
#def gen_order_4(img, t, t_next, model, alphas_cump, ets):
|
||||
t_next, t = t_start, t_end
|
||||
|
||||
t_list = [t, (t+t_next)/2, t_next]
|
||||
alphas_cump = self.alphas_cumprod
|
||||
if len(ets) > 2:
|
||||
noise_ = model(img.to("cuda"), t.to("cuda"))
|
||||
noise_ = noise_.to("cpu")
|
||||
ets.append(noise_)
|
||||
noise = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])
|
||||
else:
|
||||
noise = self.runge_kutta(img, t_list, model, alphas_cump, ets)
|
||||
|
||||
img_next = self.transfer(img.to("cpu"), t, t_next, noise, alphas_cump)
|
||||
return img_next, ets
|
||||
|
||||
def runge_kutta(self, x, t_list, model, alphas_cump, ets):
|
||||
model = model.to("cuda")
|
||||
x = x.to("cpu")
|
||||
|
||||
e_1 = model(x.to("cuda"), t_list[0].to("cuda"))
|
||||
e_1 = e_1.to("cpu")
|
||||
ets.append(e_1)
|
||||
x_2 = self.transfer(x, t_list[0], t_list[1], e_1, alphas_cump)
|
||||
|
||||
e_2 = model(x_2.to("cuda"), t_list[1].to("cuda"))
|
||||
e_2 = e_2.to("cpu")
|
||||
x_3 = self.transfer(x, t_list[0], t_list[1], e_2, alphas_cump)
|
||||
|
||||
e_3 = model(x_3.to("cuda"), t_list[1].to("cuda"))
|
||||
e_3 = e_3.to("cpu")
|
||||
x_4 = self.transfer(x, t_list[0], t_list[2], e_3, alphas_cump)
|
||||
|
||||
e_4 = model(x_4.to("cuda"), t_list[2].to("cuda"))
|
||||
e_4 = e_4.to("cpu")
|
||||
|
||||
et = (1 / 6) * (e_1 + 2 * e_2 + 2 * e_3 + e_4)
|
||||
|
||||
return et
|
||||
|
||||
def transfer(self, x, t, t_next, et, alphas_cump):
|
||||
at = alphas_cump[t.long() + 1].view(-1, 1, 1, 1)
|
||||
at_next = alphas_cump[t_next.long() + 1].view(-1, 1, 1, 1)
|
||||
|
||||
x_delta = (at_next - at) * ((1 / (at.sqrt() * (at.sqrt() + at_next.sqrt()))) * x - 1 / (at.sqrt() * (((1 - at_next) * at).sqrt() + ((1 - at) * at_next).sqrt())) * et)
|
||||
|
||||
x_next = x + x_delta
|
||||
return x_next
|
||||
|
||||
def __len__(self):
|
||||
return self.timesteps
|
Loading…
Reference in New Issue