Make tqdm calls notebook-compatible

This commit is contained in:
anton-l 2022-07-18 18:39:39 +02:00
parent ffe7b93b60
commit 1820024005
6 changed files with 12 additions and 12 deletions

View File

@ -16,7 +16,7 @@
import torch
import tqdm
from tqdm.auto import tqdm
from ...pipeline_utils import DiffusionPipeline
@ -44,7 +44,7 @@ class DDIMPipeline(DiffusionPipeline):
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in tqdm.tqdm(self.scheduler.timesteps):
for t in tqdm(self.scheduler.timesteps):
# 1. predict noise model_output
with torch.no_grad():
model_output = self.unet(image, t)

View File

@ -16,7 +16,7 @@
import torch
import tqdm
from tqdm.auto import tqdm
from ...pipeline_utils import DiffusionPipeline
@ -41,7 +41,7 @@ class DDPMPipeline(DiffusionPipeline):
image = image.to(torch_device)
num_prediction_steps = len(self.scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
for t in tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
# 1. predict noise model_output
with torch.no_grad():
model_output = self.unet(image, t)

View File

@ -22,7 +22,7 @@ import torch
import torch.utils.checkpoint
from torch import nn
import tqdm
from tqdm.auto import tqdm
from transformers import CLIPConfig, CLIPModel, CLIPTextConfig, CLIPVisionConfig, GPT2Tokenizer
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
@ -778,7 +778,7 @@ class GlidePipeline(DiffusionPipeline):
# 3. Run the text2image generation step
num_prediction_steps = len(self.text_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
for t in tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
with torch.no_grad():
time_input = torch.tensor([t] * image.shape[0], device=torch_device)
model_output = text_model_fn(image, time_input, transformer_out)

View File

@ -5,7 +5,7 @@ import torch
import torch.nn as nn
import torch.utils.checkpoint
import tqdm
from tqdm.auto import tqdm
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput
@ -599,7 +599,7 @@ class LatentDiffusionPipeline(DiffusionPipeline):
# - eta -> η
# - pred_image_direction -> "direction pointingc to x_t"
# - pred_prev_image -> "x_t-1"
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
for t in tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
# guidance_scale of 1 means no guidance
if guidance_scale == 1.0:
image_in = image

View File

@ -1,6 +1,6 @@
import torch
import tqdm
from tqdm.auto import tqdm
from ...pipeline_utils import DiffusionPipeline
@ -35,7 +35,7 @@ class LatentDiffusionUncondPipeline(DiffusionPipeline):
self.scheduler.set_timesteps(num_inference_steps)
for t in tqdm.tqdm(self.scheduler.timesteps):
for t in tqdm(self.scheduler.timesteps):
with torch.no_grad():
model_output = self.unet(image, t)

View File

@ -16,7 +16,7 @@
import torch
import tqdm
from tqdm.auto import tqdm
from ...pipeline_utils import DiffusionPipeline
@ -43,7 +43,7 @@ class PNDMPipeline(DiffusionPipeline):
image = image.to(torch_device)
prk_time_steps = self.scheduler.get_prk_time_steps(num_inference_steps)
for t in tqdm.tqdm(range(len(prk_time_steps))):
for t in tqdm(range(len(prk_time_steps))):
t_orig = prk_time_steps[t]
model_output = self.unet(image, t_orig)