diff --git a/tests/test_pipelines_flax.py b/tests/test_pipelines_flax.py index bcf71dcc..92569448 100644 --- a/tests/test_pipelines_flax.py +++ b/tests/test_pipelines_flax.py @@ -24,7 +24,7 @@ from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp - from diffusers import FlaxStableDiffusionPipeline + from diffusers import FlaxDDIMScheduler, FlaxStableDiffusionPipeline from flax.jax_utils import replicate from flax.training.common_utils import shard from jax import pmap @@ -61,7 +61,7 @@ class FlaxPipelineTests(unittest.TestCase): assert images.shape == (8, 1, 64, 64, 3) assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 4.151474)) < 1e-3 - assert np.abs((np.abs(images, dtype=np.float32).sum() - 49947.875)) < 1e-2 + assert np.abs((np.abs(images, dtype=np.float32).sum() - 49947.875)) < 5e-1 images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) @@ -93,13 +93,9 @@ class FlaxPipelineTests(unittest.TestCase): images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images - images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) - for i, image in enumerate(images_pil): - image.save(f"/home/patrick/images/flax-test-{i}_fp32.png") - assert images.shape == (8, 1, 512, 512, 3) assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3 - assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 1e-2 + assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1 def test_stable_diffusion_v1_4_bfloat_16(self): pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( @@ -129,7 +125,7 @@ class FlaxPipelineTests(unittest.TestCase): assert images.shape == (8, 1, 512, 512, 3) assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3 - assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 1e-2 + assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1 def test_stable_diffusion_v1_4_bfloat_16_with_safety(self): pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( @@ -157,4 +153,49 @@ class FlaxPipelineTests(unittest.TestCase): assert images.shape == (8, 1, 512, 512, 3) assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3 - assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 1e-2 + assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1 + + def test_stable_diffusion_v1_4_bfloat_16_ddim(self): + scheduler = FlaxDDIMScheduler( + beta_start=0.00085, + beta_end=0.012, + beta_schedule="scaled_linear", + set_alpha_to_one=False, + steps_offset=1, + ) + + pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( + "CompVis/stable-diffusion-v1-4", + revision="bf16", + dtype=jnp.bfloat16, + scheduler=scheduler, + safety_checker=None, + ) + scheduler_state = scheduler.create_state() + + params["scheduler"] = scheduler_state + + prompt = ( + "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" + " field, close up, split lighting, cinematic" + ) + + prng_seed = jax.random.PRNGKey(0) + num_inference_steps = 50 + + num_samples = jax.device_count() + prompt = num_samples * [prompt] + prompt_ids = pipeline.prepare_inputs(prompt) + + p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) + + # shard inputs and rng + params = replicate(params) + prng_seed = jax.random.split(prng_seed, 8) + prompt_ids = shard(prompt_ids) + + images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images + + assert images.shape == (8, 1, 512, 512, 3) + assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3 + assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1