[Attention] Finish refactor attention file (#1879)

* [Attention] Finish refactor attention file

* correct more

* fix

* more fixes

* correct

* up
This commit is contained in:
Patrick von Platen 2023-01-01 19:18:10 +01:00 committed by GitHub
parent 62608a9102
commit 21bbc633c4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 15 additions and 367 deletions

View File

@ -56,7 +56,7 @@ The models are built on the base class ['ModelMixin'] that is a `torch.nn.module
[[autodoc]] Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.attention.Transformer2DModelOutput
[[autodoc]] models.transformer_2d.Transformer2DModelOutput
## PriorTransformer
[[autodoc]] models.prior_transformer.PriorTransformer

View File

@ -12,31 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available
from .cross_attention import CrossAttention
from .modeling_utils import ModelMixin
@dataclass
class Transformer2DModelOutput(BaseOutput):
"""
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
for the unnoised latent pixels.
"""
sample: torch.FloatTensor
if is_xformers_available():
@ -46,213 +29,6 @@ else:
xformers = None
class Transformer2DModel(ModelMixin, ConfigMixin):
"""
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
embeddings) inputs.
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
transformer action. Finally, reshape to image.
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
classes of unnoised image.
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
Pass if the input is continuous. The number of channels in the input and output.
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
`ImagePositionalEmbeddings`.
num_vector_embeds (`int`, *optional*):
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
up to but not more than steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the TransformerBlocks' attention should contain a bias parameter.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
self.is_input_continuous = in_channels is not None
self.is_input_vectorized = num_vector_embeds is not None
if self.is_input_continuous and self.is_input_vectorized:
raise ValueError(
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is None."
)
elif not self.is_input_continuous and not self.is_input_vectorized:
raise ValueError(
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is not None."
)
# 2. Define input layers
if self.is_input_continuous:
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
self.height = sample_size
self.width = sample_size
self.num_vector_embeds = num_vector_embeds
self.num_latent_pixels = self.height * self.width
self.latent_image_embedding = ImagePositionalEmbeddings(
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if self.is_input_continuous:
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
self.norm_out = nn.LayerNorm(inner_dim)
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
def forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
cross_attention_kwargs=None,
return_dict: bool = True,
):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
hidden_states
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
"""
# 1. Input
if self.is_input_continuous:
batch, channel, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
hidden_states = self.proj_in(hidden_states)
elif self.is_input_vectorized:
hidden_states = self.latent_image_embedding(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
)
# 3. Output
if self.is_input_continuous:
if not self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
elif self.is_input_vectorized:
hidden_states = self.norm_out(hidden_states)
logits = self.out(hidden_states)
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
logits = logits.permute(0, 2, 1)
# log(p(x_0))
output = F.log_softmax(logits.double(), dim=1).float()
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
@ -624,136 +400,3 @@ class AdaLayerNorm(nn.Module):
scale, shift = torch.chunk(emb, 2)
x = self.norm(x) * (1 + scale) + shift
return x
class DualTransformer2DModel(nn.Module):
"""
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
Pass if the input is continuous. The number of channels in the input and output.
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
`ImagePositionalEmbeddings`.
num_vector_embeds (`int`, *optional*):
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
up to but not more than steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the TransformerBlocks' attention should contain a bias parameter.
"""
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
):
super().__init__()
self.transformers = nn.ModuleList(
[
Transformer2DModel(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
in_channels=in_channels,
num_layers=num_layers,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
sample_size=sample_size,
num_vector_embeds=num_vector_embeds,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
)
for _ in range(2)
]
)
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
self.mix_ratio = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
self.condition_lengths = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
self.transformer_index_for_condition = [1, 0]
def forward(
self,
hidden_states,
encoder_hidden_states,
timestep=None,
attention_mask=None,
cross_attention_kwargs=None,
return_dict: bool = True,
):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
hidden_states
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
attention_mask (`torch.FloatTensor`, *optional*):
Optional attention mask to be applied in CrossAttention
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
"""
input_states = hidden_states
encoded_states = []
tokens_start = 0
# attention_mask is not used yet
for i in range(2):
# for each of the two transformers, pass the corresponding condition tokens
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
transformer_index = self.transformer_index_for_condition[i]
encoded_state = self.transformers[transformer_index](
input_states,
encoder_hidden_states=condition_state,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
encoded_states.append(encoded_state - input_states)
tokens_start += self.condition_lengths[i]
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
output_states = output_states + input_states
if not return_dict:
return (output_states,)
return Transformer2DModelOutput(sample=output_states)

View File

@ -119,9 +119,9 @@ class DualTransformer2DModel(nn.Module):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
[`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`:
[`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
input_states = hidden_states

View File

@ -189,9 +189,9 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
[`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`:
[`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
# 1. Input
if self.is_input_continuous:

View File

@ -15,9 +15,11 @@ import numpy as np
import torch
from torch import nn
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
from .attention import AttentionBlock
from .cross_attention import CrossAttention, CrossAttnAddedKVProcessor
from .dual_transformer_2d import DualTransformer2DModel
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
from .transformer_2d import Transformer2DModel
def get_down_block(

View File

@ -6,9 +6,11 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
from ...models.attention import CrossAttention, DualTransformer2DModel, Transformer2DModel
from ...models.attention import CrossAttention
from ...models.cross_attention import AttnProcessor, CrossAttnAddedKVProcessor
from ...models.dual_transformer_2d import DualTransformer2DModel
from ...models.embeddings import TimestepEmbedding, Timesteps
from ...models.transformer_2d import Transformer2DModel
from ...models.unet_2d_condition import UNet2DConditionOutput
from ...utils import logging

View File

@ -20,9 +20,10 @@ import numpy as np
import torch
from torch import nn
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU, AttentionBlock, Transformer2DModel
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU, AttentionBlock
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.models.resnet import Downsample2D, Upsample2D
from diffusers.models.transformer_2d import Transformer2DModel
from diffusers.utils import torch_device