remove wrong file

This commit is contained in:
patil-suraj 2022-06-20 14:46:35 +02:00
parent 95a45f5b3a
commit 27359ae049
1 changed files with 0 additions and 289 deletions

289
1
View File

@ -1,289 +0,0 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ConfigMixinuration base class and utilities."""
import inspect
import json
import os
import re
from collections import OrderedDict
from typing import Any, Dict, Tuple, Union
from huggingface_hub import hf_hub_download
from requests import HTTPError
from . import __version__
from .utils import (
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
logging,
)
logger = logging.get_logger(__name__)
_re_configuration_file = re.compile(r"config\.(.*)\.json")
class ConfigMixin:
r"""
Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
methods for loading/downloading/saving configurations.
"""
config_name = None
def register_to_config(self, **kwargs):
if self.config_name is None:
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
kwargs["_class_name"] = self.__class__.__name__
kwargs["_diffusers_version"] = __version__
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
logger.error(f"Can't set {key} with value {value} for {self}")
raise err
if not hasattr(self, "_internal_dict"):
internal_dict = kwargs
else:
previous_dict = dict(self._internal_dict)
internal_dict = {**self._internal_dict, **kwargs}
logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
self._internal_dict = FrozenDict(internal_dict)
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
"""
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
[`~ConfigMixin.from_config`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the configuration JSON file will be saved (will be created if it does not exist).
kwargs:
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
# If we save using the predefined names, we can load using `from_config`
output_config_file = os.path.join(save_directory, self.config_name)
self.to_json_file(output_config_file)
logger.info(f"ConfigMixinuration saved in {output_config_file}")
@classmethod
def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs)
init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)
model = cls(**init_dict)
if return_unused_kwargs:
return model, unused_kwargs
else:
return model
@classmethod
def get_config_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
user_agent = {"file_type": "config"}
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if cls.config_name is None:
raise ValueError(
"`self.config_name` is not defined. Note that one should not load a config from "
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
)
if os.path.isfile(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
elif os.path.isdir(pretrained_model_name_or_path):
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
# Load from a PyTorch checkpoint
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
else:
raise EnvironmentError(
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
)
else:
try:
# Load from URL or cache if already cached
config_file = hf_hub_download(
pretrained_model_name_or_path,
filename=cls.config_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
)
except RepositoryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier listed"
" on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token"
" having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and"
" pass `use_auth_token=True`."
)
except RevisionNotFoundError:
raise EnvironmentError(
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
" this model name. Check the model page at"
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
)
except EntryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
)
except HTTPError as err:
raise EnvironmentError(
"There was a specific connection error when trying to load"
f" {pretrained_model_name_or_path}:\n{err}"
)
except ValueError:
raise EnvironmentError(
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
" run the library in offline mode at"
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
)
except EnvironmentError:
raise EnvironmentError(
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
f"containing a {cls.config_name} file"
)
try:
# Load config dict
config_dict = cls._dict_from_json_file(config_file)
except (json.JSONDecodeError, UnicodeDecodeError):
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
return config_dict
@classmethod
def extract_init_dict(cls, config_dict, **kwargs):
expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
expected_keys.remove("self")
init_dict = {}
for key in expected_keys:
if key in kwargs:
# overwrite key
init_dict[key] = kwargs.pop(key)
elif key in config_dict:
# use value from config dict
init_dict[key] = config_dict.pop(key)
unused_kwargs = config_dict.update(kwargs)
passed_keys = set(init_dict.keys())
if len(expected_keys - passed_keys) > 0:
logger.warning(
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
)
return init_dict, unused_kwargs
@classmethod
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return json.loads(text)
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
@property
def config(self) -> Dict[str, Any]:
return self._internal_dict
def to_json_string(self) -> str:
"""
Serializes this instance to a JSON string.
Returns:
`str`: String containing all the attributes that make up this configuration instance in JSON format.
"""
import ipdb; ipdb.set_trace()
config_dict = self._internal_dict
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
"""
Save this instance to a JSON file.
Args:
json_file_path (`str` or `os.PathLike`):
Path to the JSON file in which this configuration instance's parameters will be saved.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string())
class FrozenDict(OrderedDict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
for key, value in self.items():
setattr(self, key, value)
self.__frozen = True
def __delitem__(self, *args, **kwargs):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def setdefault(self, *args, **kwargs):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def pop(self, *args, **kwargs):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __setattr__(self, name, value):
if hasattr(self, "__frozen") and self.__frozen:
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
super().__setattr__(name, value)
def __setitem__(self, name, value):
if hasattr(self, "__frozen") and self.__frozen:
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
super().__setitem__(name, value)