Merge branch 'main' of github.com:huggingface/diffusers
This commit is contained in:
commit
2f8e556b46
|
@ -0,0 +1,236 @@
|
|||
#!/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
########################################################################
|
||||
#
|
||||
# DiffWave: A Versatile Diffusion Model for Audio Synthesis
|
||||
# (https://arxiv.org/abs/2009.09761)
|
||||
# Modified from https://github.com/philsyn/DiffWave-Vocoder
|
||||
#
|
||||
# Author: Max W. Y. Lam (maxwylam@tencent.com)
|
||||
# Copyright (c) 2021Tencent. All Rights Reserved
|
||||
#
|
||||
########################################################################
|
||||
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def calc_diffusion_step_embedding(diffusion_steps, diffusion_step_embed_dim_in):
|
||||
"""
|
||||
Embed a diffusion step $t$ into a higher dimensional space
|
||||
E.g. the embedding vector in the 128-dimensional space is
|
||||
[sin(t * 10^(0*4/63)), ... , sin(t * 10^(63*4/63)),
|
||||
cos(t * 10^(0*4/63)), ... , cos(t * 10^(63*4/63))]
|
||||
|
||||
Parameters:
|
||||
diffusion_steps (torch.long tensor, shape=(batchsize, 1)):
|
||||
diffusion steps for batch data
|
||||
diffusion_step_embed_dim_in (int, default=128):
|
||||
dimensionality of the embedding space for discrete diffusion steps
|
||||
Returns:
|
||||
the embedding vectors (torch.tensor, shape=(batchsize, diffusion_step_embed_dim_in)):
|
||||
"""
|
||||
|
||||
assert diffusion_step_embed_dim_in % 2 == 0
|
||||
|
||||
half_dim = diffusion_step_embed_dim_in // 2
|
||||
_embed = np.log(10000) / (half_dim - 1)
|
||||
_embed = torch.exp(torch.arange(half_dim) * -_embed).cuda()
|
||||
_embed = diffusion_steps * _embed
|
||||
diffusion_step_embed = torch.cat((torch.sin(_embed),
|
||||
torch.cos(_embed)), 1)
|
||||
return diffusion_step_embed
|
||||
|
||||
|
||||
"""
|
||||
Below scripts were borrowed from
|
||||
https://github.com/philsyn/DiffWave-Vocoder/blob/master/WaveNet.py
|
||||
"""
|
||||
|
||||
|
||||
def swish(x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
# dilated conv layer with kaiming_normal initialization
|
||||
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py
|
||||
class Conv(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1):
|
||||
super().__init__()
|
||||
self.padding = dilation * (kernel_size - 1) // 2
|
||||
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
|
||||
dilation=dilation, padding=self.padding)
|
||||
self.conv = nn.utils.weight_norm(self.conv)
|
||||
nn.init.kaiming_normal_(self.conv.weight)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
return out
|
||||
|
||||
|
||||
# conv1x1 layer with zero initialization
|
||||
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py but the scale parameter is removed
|
||||
class ZeroConv1d(nn.Module):
|
||||
def __init__(self, in_channel, out_channel):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv1d(in_channel, out_channel, kernel_size=1, padding=0)
|
||||
self.conv.weight.data.zero_()
|
||||
self.conv.bias.data.zero_()
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
return out
|
||||
|
||||
|
||||
# every residual block (named residual layer in paper)
|
||||
# contains one noncausal dilated conv
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, res_channels, skip_channels, dilation,
|
||||
diffusion_step_embed_dim_out):
|
||||
super().__init__()
|
||||
self.res_channels = res_channels
|
||||
|
||||
# Use a FC layer for diffusion step embedding
|
||||
self.fc_t = nn.Linear(diffusion_step_embed_dim_out, self.res_channels)
|
||||
|
||||
# Dilated conv layer
|
||||
self.dilated_conv_layer = Conv(self.res_channels, 2 * self.res_channels,
|
||||
kernel_size=3, dilation=dilation)
|
||||
|
||||
# Add mel spectrogram upsampler and conditioner conv1x1 layer
|
||||
self.upsample_conv2d = nn.ModuleList()
|
||||
for s in [16, 16]:
|
||||
conv_trans2d = nn.ConvTranspose2d(1, 1, (3, 2 * s),
|
||||
padding=(1, s // 2),
|
||||
stride=(1, s))
|
||||
conv_trans2d = nn.utils.weight_norm(conv_trans2d)
|
||||
nn.init.kaiming_normal_(conv_trans2d.weight)
|
||||
self.upsample_conv2d.append(conv_trans2d)
|
||||
|
||||
# 80 is mel bands
|
||||
self.mel_conv = Conv(80, 2 * self.res_channels, kernel_size=1)
|
||||
|
||||
# Residual conv1x1 layer, connect to next residual layer
|
||||
self.res_conv = nn.Conv1d(res_channels, res_channels, kernel_size=1)
|
||||
self.res_conv = nn.utils.weight_norm(self.res_conv)
|
||||
nn.init.kaiming_normal_(self.res_conv.weight)
|
||||
|
||||
# Skip conv1x1 layer, add to all skip outputs through skip connections
|
||||
self.skip_conv = nn.Conv1d(res_channels, skip_channels, kernel_size=1)
|
||||
self.skip_conv = nn.utils.weight_norm(self.skip_conv)
|
||||
nn.init.kaiming_normal_(self.skip_conv.weight)
|
||||
|
||||
def forward(self, input_data):
|
||||
x, mel_spec, diffusion_step_embed = input_data
|
||||
h = x
|
||||
batch_size, n_channels, seq_len = x.shape
|
||||
assert n_channels == self.res_channels
|
||||
|
||||
# Add in diffusion step embedding
|
||||
part_t = self.fc_t(diffusion_step_embed)
|
||||
part_t = part_t.view([batch_size, self.res_channels, 1])
|
||||
h += part_t
|
||||
|
||||
# Dilated conv layer
|
||||
h = self.dilated_conv_layer(h)
|
||||
|
||||
# Upsample spectrogram to size of audio
|
||||
mel_spec = torch.unsqueeze(mel_spec, dim=1)
|
||||
mel_spec = F.leaky_relu(self.upsample_conv2d[0](mel_spec), 0.4, inplace=False)
|
||||
mel_spec = F.leaky_relu(self.upsample_conv2d[1](mel_spec), 0.4, inplace=False)
|
||||
mel_spec = torch.squeeze(mel_spec, dim=1)
|
||||
|
||||
assert mel_spec.size(2) >= seq_len
|
||||
if mel_spec.size(2) > seq_len:
|
||||
mel_spec = mel_spec[:, :, :seq_len]
|
||||
|
||||
mel_spec = self.mel_conv(mel_spec)
|
||||
h += mel_spec
|
||||
|
||||
# Gated-tanh nonlinearity
|
||||
out = torch.tanh(h[:, :self.res_channels, :]) * torch.sigmoid(h[:, self.res_channels:, :])
|
||||
|
||||
# Residual and skip outputs
|
||||
res = self.res_conv(out)
|
||||
assert x.shape == res.shape
|
||||
skip = self.skip_conv(out)
|
||||
|
||||
# Normalize for training stability
|
||||
return (x + res) * math.sqrt(0.5), skip
|
||||
|
||||
|
||||
class ResidualGroup(nn.Module):
|
||||
def __init__(self, res_channels, skip_channels, num_res_layers, dilation_cycle,
|
||||
diffusion_step_embed_dim_in,
|
||||
diffusion_step_embed_dim_mid,
|
||||
diffusion_step_embed_dim_out):
|
||||
super().__init__()
|
||||
self.num_res_layers = num_res_layers
|
||||
self.diffusion_step_embed_dim_in = diffusion_step_embed_dim_in
|
||||
|
||||
# Use the shared two FC layers for diffusion step embedding
|
||||
self.fc_t1 = nn.Linear(diffusion_step_embed_dim_in, diffusion_step_embed_dim_mid)
|
||||
self.fc_t2 = nn.Linear(diffusion_step_embed_dim_mid, diffusion_step_embed_dim_out)
|
||||
|
||||
# Stack all residual blocks with dilations 1, 2, ... , 512, ... , 1, 2, ..., 512
|
||||
self.residual_blocks = nn.ModuleList()
|
||||
for n in range(self.num_res_layers):
|
||||
self.residual_blocks.append(
|
||||
ResidualBlock(res_channels, skip_channels,
|
||||
dilation=2 ** (n % dilation_cycle),
|
||||
diffusion_step_embed_dim_out=diffusion_step_embed_dim_out))
|
||||
|
||||
def forward(self, input_data):
|
||||
x, mel_spectrogram, diffusion_steps = input_data
|
||||
|
||||
# Embed diffusion step t
|
||||
diffusion_step_embed = calc_diffusion_step_embedding(
|
||||
diffusion_steps, self.diffusion_step_embed_dim_in)
|
||||
diffusion_step_embed = swish(self.fc_t1(diffusion_step_embed))
|
||||
diffusion_step_embed = swish(self.fc_t2(diffusion_step_embed))
|
||||
|
||||
# Pass all residual layers
|
||||
h = x
|
||||
skip = 0
|
||||
for n in range(self.num_res_layers):
|
||||
# Use the output from last residual layer
|
||||
h, skip_n = self.residual_blocks[n]((h, mel_spectrogram, diffusion_step_embed))
|
||||
# Accumulate all skip outputs
|
||||
skip += skip_n
|
||||
|
||||
# Normalize for training stability
|
||||
return skip * math.sqrt(1.0 / self.num_res_layers)
|
||||
|
||||
|
||||
class DiffWave(nn.Module):
|
||||
def __init__(self, in_channels, res_channels, skip_channels, out_channels,
|
||||
num_res_layers, dilation_cycle,
|
||||
diffusion_step_embed_dim_in,
|
||||
diffusion_step_embed_dim_mid,
|
||||
diffusion_step_embed_dim_out):
|
||||
super().__init__()
|
||||
|
||||
# Initial conv1x1 with relu
|
||||
self.init_conv = nn.Sequential(Conv(in_channels, res_channels, kernel_size=1), nn.ReLU(inplace=False))
|
||||
# All residual layers
|
||||
self.residual_layer = ResidualGroup(res_channels,
|
||||
skip_channels,
|
||||
num_res_layers,
|
||||
dilation_cycle,
|
||||
diffusion_step_embed_dim_in,
|
||||
diffusion_step_embed_dim_mid,
|
||||
diffusion_step_embed_dim_out)
|
||||
# Final conv1x1 -> relu -> zeroconv1x1
|
||||
self.final_conv = nn.Sequential(Conv(skip_channels, skip_channels, kernel_size=1),
|
||||
nn.ReLU(inplace=False), ZeroConv1d(skip_channels, out_channels))
|
||||
|
||||
def forward(self, input_data):
|
||||
audio, mel_spectrogram, diffusion_steps = input_data
|
||||
x = audio
|
||||
x = self.init_conv(x).clone()
|
||||
x = self.residual_layer((x, mel_spectrogram, diffusion_steps))
|
||||
return self.final_conv(x)
|
Loading…
Reference in New Issue