|
|
|
@ -0,0 +1,447 @@
|
|
|
|
|
import inspect
|
|
|
|
|
from typing import Callable, List, Optional, Union
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
import PIL
|
|
|
|
|
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
|
|
|
|
|
|
|
|
|
from ...configuration_utils import FrozenDict
|
|
|
|
|
from ...onnx_utils import OnnxRuntimeModel
|
|
|
|
|
from ...pipeline_utils import DiffusionPipeline
|
|
|
|
|
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
|
|
|
|
from ...utils import deprecate, logging
|
|
|
|
|
from . import StableDiffusionPipelineOutput
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess(image):
|
|
|
|
|
w, h = image.size
|
|
|
|
|
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
|
|
|
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
|
|
|
return 2.0 * image - 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess_mask(mask):
|
|
|
|
|
mask = mask.convert("L")
|
|
|
|
|
w, h = mask.size
|
|
|
|
|
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
|
|
|
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
|
|
|
|
|
mask = np.array(mask).astype(np.float32) / 255.0
|
|
|
|
|
mask = np.tile(mask, (4, 1, 1))
|
|
|
|
|
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
|
|
|
|
mask = 1 - mask # repaint white, keep black
|
|
|
|
|
return mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
|
|
|
|
|
r"""
|
|
|
|
|
Pipeline for text-guided image inpainting using Stable Diffusion. This is a *legacy feature* for Onnx pipelines to
|
|
|
|
|
provide compatibility with StableDiffusionInpaintPipelineLegacy and may be removed in the future.
|
|
|
|
|
|
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
|
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
vae ([`AutoencoderKL`]):
|
|
|
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
|
|
|
text_encoder ([`CLIPTextModel`]):
|
|
|
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
|
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
|
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
|
|
|
tokenizer (`CLIPTokenizer`):
|
|
|
|
|
Tokenizer of class
|
|
|
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
|
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
|
|
|
scheduler ([`SchedulerMixin`]):
|
|
|
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
|
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
|
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
|
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
|
|
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
|
|
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
|
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
|
|
|
"""
|
|
|
|
|
vae_encoder: OnnxRuntimeModel
|
|
|
|
|
vae_decoder: OnnxRuntimeModel
|
|
|
|
|
text_encoder: OnnxRuntimeModel
|
|
|
|
|
tokenizer: CLIPTokenizer
|
|
|
|
|
unet: OnnxRuntimeModel
|
|
|
|
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
|
|
|
|
|
safety_checker: OnnxRuntimeModel
|
|
|
|
|
feature_extractor: CLIPFeatureExtractor
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
vae_encoder: OnnxRuntimeModel,
|
|
|
|
|
vae_decoder: OnnxRuntimeModel,
|
|
|
|
|
text_encoder: OnnxRuntimeModel,
|
|
|
|
|
tokenizer: CLIPTokenizer,
|
|
|
|
|
unet: OnnxRuntimeModel,
|
|
|
|
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
|
|
|
|
safety_checker: OnnxRuntimeModel,
|
|
|
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
|
|
|
|
deprecation_message = (
|
|
|
|
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
|
|
|
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
|
|
|
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
|
|
|
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
|
|
|
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
|
|
|
|
" file"
|
|
|
|
|
)
|
|
|
|
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
|
|
|
|
new_config = dict(scheduler.config)
|
|
|
|
|
new_config["steps_offset"] = 1
|
|
|
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
|
|
|
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
|
|
|
|
deprecation_message = (
|
|
|
|
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
|
|
|
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
|
|
|
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
|
|
|
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
|
|
|
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
|
|
|
|
)
|
|
|
|
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
|
|
|
|
new_config = dict(scheduler.config)
|
|
|
|
|
new_config["clip_sample"] = False
|
|
|
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
|
|
|
|
|
|
if safety_checker is None:
|
|
|
|
|
logger.warning(
|
|
|
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
|
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
|
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
|
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
|
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
|
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.register_modules(
|
|
|
|
|
vae_encoder=vae_encoder,
|
|
|
|
|
vae_decoder=vae_decoder,
|
|
|
|
|
text_encoder=text_encoder,
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
|
unet=unet,
|
|
|
|
|
scheduler=scheduler,
|
|
|
|
|
safety_checker=safety_checker,
|
|
|
|
|
feature_extractor=feature_extractor,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline._encode_prompt
|
|
|
|
|
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
|
|
|
|
r"""
|
|
|
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (`str` or `list(int)`):
|
|
|
|
|
prompt to be encoded
|
|
|
|
|
num_images_per_prompt (`int`):
|
|
|
|
|
number of images that should be generated per prompt
|
|
|
|
|
do_classifier_free_guidance (`bool`):
|
|
|
|
|
whether to use classifier free guidance or not
|
|
|
|
|
negative_prompt (`str` or `List[str]`):
|
|
|
|
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
|
|
|
|
if `guidance_scale` is less than `1`).
|
|
|
|
|
"""
|
|
|
|
|
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
|
|
|
|
|
|
|
|
|
# get prompt text embeddings
|
|
|
|
|
text_inputs = self.tokenizer(
|
|
|
|
|
prompt,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=self.tokenizer.model_max_length,
|
|
|
|
|
truncation=True,
|
|
|
|
|
return_tensors="np",
|
|
|
|
|
)
|
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
|
|
|
|
|
|
|
|
|
|
if not np.array_equal(text_input_ids, untruncated_ids):
|
|
|
|
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
|
|
|
|
logger.warning(
|
|
|
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
|
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
|
|
|
|
|
text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0)
|
|
|
|
|
|
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
uncond_tokens: List[str]
|
|
|
|
|
if negative_prompt is None:
|
|
|
|
|
uncond_tokens = [""] * batch_size
|
|
|
|
|
elif type(prompt) is not type(negative_prompt):
|
|
|
|
|
raise TypeError(
|
|
|
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
|
|
|
f" {type(prompt)}."
|
|
|
|
|
)
|
|
|
|
|
elif isinstance(negative_prompt, str):
|
|
|
|
|
uncond_tokens = [negative_prompt] * batch_size
|
|
|
|
|
elif batch_size != len(negative_prompt):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
|
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
|
|
|
" the batch size of `prompt`."
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
uncond_tokens = negative_prompt
|
|
|
|
|
|
|
|
|
|
max_length = text_input_ids.shape[-1]
|
|
|
|
|
uncond_input = self.tokenizer(
|
|
|
|
|
uncond_tokens,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=max_length,
|
|
|
|
|
truncation=True,
|
|
|
|
|
return_tensors="np",
|
|
|
|
|
)
|
|
|
|
|
uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
|
|
|
|
|
uncond_embeddings = np.repeat(uncond_embeddings, num_images_per_prompt, axis=0)
|
|
|
|
|
|
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
|
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
|
|
|
# to avoid doing two forward passes
|
|
|
|
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
|
|
|
|
|
|
|
|
|
return text_embeddings
|
|
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
|
self,
|
|
|
|
|
prompt: Union[str, List[str]],
|
|
|
|
|
init_image: Union[np.ndarray, PIL.Image.Image],
|
|
|
|
|
mask_image: Union[np.ndarray, PIL.Image.Image],
|
|
|
|
|
strength: float = 0.8,
|
|
|
|
|
num_inference_steps: Optional[int] = 50,
|
|
|
|
|
guidance_scale: Optional[float] = 7.5,
|
|
|
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
|
|
|
eta: Optional[float] = 0.0,
|
|
|
|
|
generator: Optional[np.random.RandomState] = None,
|
|
|
|
|
output_type: Optional[str] = "pil",
|
|
|
|
|
return_dict: bool = True,
|
|
|
|
|
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
|
|
|
|
callback_steps: Optional[int] = 1,
|
|
|
|
|
**kwargs,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (`str` or `List[str]`):
|
|
|
|
|
The prompt or prompts to guide the image generation.
|
|
|
|
|
init_image (`nd.ndarray` or `PIL.Image.Image`):
|
|
|
|
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
|
|
|
|
process. This is the image whose masked region will be inpainted.
|
|
|
|
|
mask_image (`nd.ndarray` or `PIL.Image.Image`):
|
|
|
|
|
`Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be
|
|
|
|
|
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
|
|
|
|
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
|
|
|
|
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.uu
|
|
|
|
|
strength (`float`, *optional*, defaults to 0.8):
|
|
|
|
|
Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1.
|
|
|
|
|
`init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
|
|
|
|
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
|
|
|
|
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
|
|
|
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`.
|
|
|
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
|
expense of slower inference. This parameter will be modulated by `strength`.
|
|
|
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
|
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
|
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
|
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
|
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
|
|
|
usually at the expense of lower image quality.
|
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
|
|
|
|
if `guidance_scale` is less than `1`).
|
|
|
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
|
|
The number of images to generate per prompt.
|
|
|
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
|
|
|
Corresponds to parameter eta (?) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
|
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
|
|
|
generator (`np.random.RandomState`, *optional*):
|
|
|
|
|
A np.random.RandomState to make generation deterministic.
|
|
|
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
|
The output format of the generate image. Choose between
|
|
|
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
|
|
|
plain tuple.
|
|
|
|
|
callback (`Callable`, *optional*):
|
|
|
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
|
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
|
|
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
|
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
|
|
|
called at every step.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
|
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
|
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
|
|
|
(nsfw) content, according to the `safety_checker`.
|
|
|
|
|
"""
|
|
|
|
|
if isinstance(prompt, str):
|
|
|
|
|
batch_size = 1
|
|
|
|
|
elif isinstance(prompt, list):
|
|
|
|
|
batch_size = len(prompt)
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
|
|
|
|
|
|
if strength < 0 or strength > 1:
|
|
|
|
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
|
|
|
|
|
|
|
|
|
if (callback_steps is None) or (
|
|
|
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
|
|
|
):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
|
|
|
f" {type(callback_steps)}."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if generator is None:
|
|
|
|
|
generator = np.random
|
|
|
|
|
|
|
|
|
|
# set timesteps
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps)
|
|
|
|
|
|
|
|
|
|
if isinstance(init_image, PIL.Image.Image):
|
|
|
|
|
init_image = preprocess(init_image)
|
|
|
|
|
|
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
|
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
|
|
|
# corresponds to doing no classifier free guidance.
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
|
|
|
|
text_embeddings = self._encode_prompt(
|
|
|
|
|
prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
latents_dtype = text_embeddings.dtype
|
|
|
|
|
init_image = init_image.astype(latents_dtype)
|
|
|
|
|
|
|
|
|
|
# encode the init image into latents and scale the latents
|
|
|
|
|
init_latents = self.vae_encoder(sample=init_image)[0]
|
|
|
|
|
init_latents = 0.18215 * init_latents
|
|
|
|
|
|
|
|
|
|
# Expand init_latents for batch_size and num_images_per_prompt
|
|
|
|
|
init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0)
|
|
|
|
|
init_latents_orig = init_latents
|
|
|
|
|
|
|
|
|
|
# preprocess mask
|
|
|
|
|
if not isinstance(mask_image, np.ndarray):
|
|
|
|
|
mask_image = preprocess_mask(mask_image)
|
|
|
|
|
mask_image = mask_image.astype(latents_dtype)
|
|
|
|
|
mask = np.concatenate([mask_image] * num_images_per_prompt, axis=0)
|
|
|
|
|
|
|
|
|
|
# check sizes
|
|
|
|
|
if not mask.shape == init_latents.shape:
|
|
|
|
|
raise ValueError("The mask and init_image should be the same size!")
|
|
|
|
|
|
|
|
|
|
# get the original timestep using init_timestep
|
|
|
|
|
offset = self.scheduler.config.get("steps_offset", 0)
|
|
|
|
|
init_timestep = int(num_inference_steps * strength) + offset
|
|
|
|
|
init_timestep = min(init_timestep, num_inference_steps)
|
|
|
|
|
|
|
|
|
|
timesteps = self.scheduler.timesteps.numpy()[-init_timestep]
|
|
|
|
|
timesteps = np.array([timesteps] * batch_size * num_images_per_prompt)
|
|
|
|
|
|
|
|
|
|
# add noise to latents using the timesteps
|
|
|
|
|
noise = generator.randn(*init_latents.shape).astype(latents_dtype)
|
|
|
|
|
init_latents = self.scheduler.add_noise(
|
|
|
|
|
torch.from_numpy(init_latents), torch.from_numpy(noise), torch.from_numpy(timesteps)
|
|
|
|
|
)
|
|
|
|
|
init_latents = init_latents.numpy()
|
|
|
|
|
|
|
|
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
|
|
|
# eta (?) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
|
|
|
# eta corresponds to ? in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
|
|
|
# and should be between [0, 1]
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
|
|
extra_step_kwargs = {}
|
|
|
|
|
if accepts_eta:
|
|
|
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
|
|
|
|
latents = init_latents
|
|
|
|
|
|
|
|
|
|
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
|
|
|
|
timesteps = self.scheduler.timesteps[t_start:].numpy()
|
|
|
|
|
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)):
|
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
|
|
|
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
|
|
|
|
# predict the noise residual
|
|
|
|
|
noise_pred = self.unet(
|
|
|
|
|
sample=latent_model_input, timestep=np.array([t]), encoder_hidden_states=text_embeddings
|
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
|
|
# perform guidance
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
|
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
|
|
|
latents = self.scheduler.step(
|
|
|
|
|
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
|
|
|
|
|
).prev_sample
|
|
|
|
|
|
|
|
|
|
latents = latents.numpy()
|
|
|
|
|
|
|
|
|
|
init_latents_proper = self.scheduler.add_noise(
|
|
|
|
|
torch.from_numpy(init_latents_orig), torch.from_numpy(noise), torch.from_numpy(np.array([t]))
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
init_latents_proper = init_latents_proper.numpy()
|
|
|
|
|
|
|
|
|
|
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
|
|
|
|
|
|
|
|
|
# call the callback, if provided
|
|
|
|
|
if callback is not None and i % callback_steps == 0:
|
|
|
|
|
callback(i, t, latents)
|
|
|
|
|
|
|
|
|
|
latents = 1 / 0.18215 * latents
|
|
|
|
|
# image = self.vae_decoder(latent_sample=latents)[0]
|
|
|
|
|
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
|
|
|
|
|
image = np.concatenate(
|
|
|
|
|
[self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
image = np.clip(image / 2 + 0.5, 0, 1)
|
|
|
|
|
image = image.transpose((0, 2, 3, 1))
|
|
|
|
|
|
|
|
|
|
if self.safety_checker is not None:
|
|
|
|
|
safety_checker_input = self.feature_extractor(
|
|
|
|
|
self.numpy_to_pil(image), return_tensors="np"
|
|
|
|
|
).pixel_values.astype(image.dtype)
|
|
|
|
|
# There will throw an error if use safety_checker batchsize>1
|
|
|
|
|
images, has_nsfw_concept = [], []
|
|
|
|
|
for i in range(image.shape[0]):
|
|
|
|
|
image_i, has_nsfw_concept_i = self.safety_checker(
|
|
|
|
|
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
|
|
|
|
|
)
|
|
|
|
|
images.append(image_i)
|
|
|
|
|
has_nsfw_concept.append(has_nsfw_concept_i[0])
|
|
|
|
|
image = np.concatenate(images)
|
|
|
|
|
else:
|
|
|
|
|
has_nsfw_concept = None
|
|
|
|
|
|
|
|
|
|
if output_type == "pil":
|
|
|
|
|
image = self.numpy_to_pil(image)
|
|
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
|
return (image, has_nsfw_concept)
|
|
|
|
|
|
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|