This commit is contained in:
Patrick von Platen 2022-11-17 15:50:36 +01:00
commit 3fb28c44a3
8 changed files with 280 additions and 5 deletions

View File

@ -127,3 +127,24 @@ dataset.push_to_hub("name_of_your_dataset", private=True)
and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub. and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub.
More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets). More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets).
#### Use ONNXRuntime to accelerate training
In order to leverage onnxruntime to accelerate training, please use train_unconditional_ort.py
The command to train a DDPM UNet model on the Oxford Flowers dataset with onnxruntime:
```bash
accelerate launch train_unconditional_ort.py \
--dataset_name="huggan/flowers-102-categories" \
--resolution=64 \
--output_dir="ddpm-ema-flowers-64" \
--train_batch_size=16 \
--num_epochs=1 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-4 \
--lr_warmup_steps=500 \
--mixed_precision=fp16
```
Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.

View File

@ -0,0 +1,251 @@
import argparse
import math
import os
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from onnxruntime.training.ortmodule import ORTModule
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Normalize,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
logger = get_logger(__name__)
def main(args):
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
model = UNet2DModel(
sample_size=args.resolution,
in_channels=3,
out_channels=3,
layers_per_block=2,
block_out_channels=(128, 128, 256, 256, 512, 512),
down_block_types=(
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
),
up_block_types=(
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
model = ORTModule(model)
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt")
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Normalize([0.5], [0.5]),
]
)
if args.dataset_name is not None:
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
use_auth_token=True if args.use_auth_token else None,
split="train",
)
else:
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
def transforms(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
return {"input": images}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
if accelerator.is_main_process:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
global_step = 0
for epoch in range(args.num_epochs):
model.train()
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
# Sample noise that we'll add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, return_dict=True)[0]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
if args.use_ema:
ema_model.step(model)
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
if args.use_ema:
logs["ema_decay"] = ema_model.decay
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
progress_bar.close()
accelerator.wait_for_everyone()
# Generate sample images for visual inspection
if accelerator.is_main_process:
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
pipeline = DDPMPipeline(
unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
scheduler=noise_scheduler,
)
generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images
# denormalize the images and save to tensorboard
images_processed = (images * 255).round().astype("uint8")
accelerator.trackers[0].writer.add_images(
"test_samples", images_processed.transpose(0, 3, 1, 2), epoch
)
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
# save the model
if args.push_to_hub:
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
else:
pipeline.save_pretrained(args.output_dir)
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset_name", type=str, default=None)
parser.add_argument("--dataset_config_name", type=str, default=None)
parser.add_argument("--train_data_dir", type=str, default=None, help="A folder containing the training data.")
parser.add_argument("--output_dir", type=str, default="ddpm-model-64")
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--resolution", type=int, default=64)
parser.add_argument("--train_batch_size", type=int, default=16)
parser.add_argument("--eval_batch_size", type=int, default=16)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--save_images_epochs", type=int, default=10)
parser.add_argument("--save_model_epochs", type=int, default=10)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler", type=str, default="cosine")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--adam_beta1", type=float, default=0.95)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--use_ema", action="store_true", default=True)
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
parser.add_argument("--ema_power", type=float, default=3 / 4)
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
parser.add_argument("--push_to_hub", action="store_true")
parser.add_argument("--use_auth_token", action="store_true")
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", action="store_true")
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
main(args)

View File

@ -78,6 +78,9 @@ LOADABLE_CLASSES = {
"ProcessorMixin": ["save_pretrained", "from_pretrained"], "ProcessorMixin": ["save_pretrained", "from_pretrained"],
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"], "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
}, },
"onnxruntime.training": {
"ORTModule": ["save_pretrained", "from_pretrained"],
},
} }
ALL_IMPORTABLE_CLASSES = {} ALL_IMPORTABLE_CLASSES = {}

View File

@ -178,7 +178,7 @@ class AltDiffusionImg2ImgPipeline(DiffusionPipeline):
self.enable_attention_slicing(None) self.enable_attention_slicing(None)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.enable_sequential_cpu_offload # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self): def enable_sequential_cpu_offload(self, gpu_id=0):
r""" r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a

View File

@ -209,7 +209,7 @@ class CycleDiffusionPipeline(DiffusionPipeline):
self.enable_attention_slicing(None) self.enable_attention_slicing(None)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self): def enable_sequential_cpu_offload(self, gpu_id=0):
r""" r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a

View File

@ -176,7 +176,7 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
self.enable_attention_slicing(None) self.enable_attention_slicing(None)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self): def enable_sequential_cpu_offload(self, gpu_id=0):
r""" r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a

View File

@ -169,7 +169,7 @@ class StableDiffusionInpaintPipeline(DiffusionPipeline):
self.enable_attention_slicing(None) self.enable_attention_slicing(None)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self): def enable_sequential_cpu_offload(self, gpu_id=0):
r""" r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a

View File

@ -189,7 +189,7 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
self.enable_attention_slicing(None) self.enable_attention_slicing(None)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self): def enable_sequential_cpu_offload(self, gpu_id=0):
r""" r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a