Refactor cross attention and allow mechanism to tweak cross attention function (#1639)

* first proposal

* rename

* up

* Apply suggestions from code review

* better

* up

* finish

* up

* rename

* correct versatile

* up

* up

* up

* up

* fix

* Apply suggestions from code review

* make style

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add error message

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
This commit is contained in:
Patrick von Platen 2022-12-20 18:49:05 +01:00 committed by GitHub
parent a9190badf7
commit 4125756e88
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 660 additions and 324 deletions

View File

@ -24,6 +24,7 @@ from ..modeling_utils import ModelMixin
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available
from .cross_attention import CrossAttention
@dataclass
@ -175,7 +176,14 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
self.norm_out = nn.LayerNorm(inner_dim)
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
def forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
cross_attention_kwargs=None,
return_dict: bool = True,
):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
@ -213,7 +221,12 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep)
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
)
# 3. Output
if self.is_input_continuous:
@ -287,6 +300,20 @@ class AttentionBlock(nn.Module):
self._use_memory_efficient_attention_xformers = False
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.num_heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.num_heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if use_memory_efficient_attention_xformers:
if not is_xformers_available():
@ -312,20 +339,6 @@ class AttentionBlock(nn.Module):
raise e
self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.num_heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.num_heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def forward(self, hidden_states):
residual = hidden_states
batch, channel, height, width = hidden_states.shape
@ -423,7 +436,8 @@ class BasicTransformerBlock(nn.Module):
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
) # is a self-attention
)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
# 2. Cross-Attn
@ -450,58 +464,39 @@ class BasicTransformerBlock(nn.Module):
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if use_memory_efficient_attention_xformers:
if not is_xformers_available():
print("Here is how to install it")
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
" only available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
if self.attn2 is not None:
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None):
def forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
attention_mask=None,
cross_attention_kwargs=None,
):
# 1. Self-Attention
norm_hidden_states = (
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
)
if self.only_cross_attention:
hidden_states = (
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
hidden_states = attn_output + hidden_states
if self.attn2 is not None:
# 2. Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
hidden_states = (
self.attn2(
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
)
+ hidden_states
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
@ -509,229 +504,6 @@ class BasicTransformerBlock(nn.Module):
return hidden_states
class CrossAttention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
added_kv_proj_dim: Optional[int] = None,
norm_num_groups: Optional[int] = None,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.scale = dim_head**-0.5
self.heads = heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self._slice_size = None
self._use_memory_efficient_attention_xformers = False
self.added_kv_proj_dim = added_kv_proj_dim
if norm_num_groups is not None:
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
else:
self.group_norm = None
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
self.to_out.append(nn.Dropout(dropout))
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def set_attention_slice(self, slice_size):
if slice_size is not None and slice_size > self.sliceable_head_dim:
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
self._slice_size = slice_size
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
encoder_hidden_states = encoder_hidden_states
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
else:
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def _attention(self, query, key, value, attention_mask=None):
if self.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
if self.upcast_softmax:
attention_scores = attention_scores.float()
attention_probs = attention_scores.softmax(dim=-1)
# cast back to the original dtype
attention_probs = attention_probs.to(value.dtype)
# compute attention output
hidden_states = torch.bmm(attention_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
)
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
for i in range(hidden_states.shape[0] // slice_size):
start_idx = i * slice_size
end_idx = (i + 1) * slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
if self.upcast_attention:
query_slice = query_slice.float()
key_slice = key_slice.float()
attn_slice = torch.baddbmm(
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
query_slice,
key_slice.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attn_slice = attn_slice + attention_mask[start_idx:end_idx]
if self.upcast_softmax:
attn_slice = attn_slice.float()
attn_slice = attn_slice.softmax(dim=-1)
# cast back to the original dtype
attn_slice = attn_slice.to(value.dtype)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
# TODO attention_mask
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.

View File

@ -0,0 +1,428 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..utils.import_utils import is_xformers_available
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class CrossAttention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
added_kv_proj_dim: Optional[int] = None,
norm_num_groups: Optional[int] = None,
processor: Optional["AttnProcessor"] = None,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.scale = dim_head**-0.5
self.heads = heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self.added_kv_proj_dim = added_kv_proj_dim
if norm_num_groups is not None:
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
else:
self.group_norm = None
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
self.to_out.append(nn.Dropout(dropout))
# set attention processor
processor = processor if processor is not None else CrossAttnProcessor()
self.set_processor(processor)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if use_memory_efficient_attention_xformers:
if self.added_kv_proj_dim is not None:
# TODO(Anton, Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
# which uses this type of cross attention ONLY because the attention mask of format
# [0, ..., -10.000, ..., 0, ...,] is not supported
raise NotImplementedError(
"Memory efficient attention with `xformers` is currently not supported when"
" `self.added_kv_proj_dim` is defined."
)
elif not is_xformers_available():
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
" only available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
processor = XFormersCrossAttnProcessor()
else:
processor = CrossAttnProcessor()
self.set_processor(processor)
def set_attention_slice(self, slice_size):
if slice_size is not None and slice_size > self.sliceable_head_dim:
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
if slice_size is not None and self.added_kv_proj_dim is not None:
processor = SlicedAttnAddedKVProcessor(slice_size)
elif slice_size is not None:
processor = SlicedAttnProcessor(slice_size)
elif self.added_kv_proj_dim is not None:
processor = CrossAttnAddedKVProcessor()
else:
processor = CrossAttnProcessor()
self.set_processor(processor)
def set_processor(self, processor: "AttnProcessor"):
self.processor = processor
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
# The `CrossAttention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
def batch_to_head_dim(self, tensor):
head_size = self.heads
batch_size, seq_len, dim = tensor.shape
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def head_to_batch_dim(self, tensor):
head_size = self.heads
batch_size, seq_len, dim = tensor.shape
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def get_attention_scores(self, query, key, attention_mask=None):
dtype = query.dtype
if self.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
if self.upcast_softmax:
attention_scores = attention_scores.float()
attention_probs = attention_scores.softmax(dim=-1)
attention_probs = attention_probs.to(dtype)
return attention_probs
def prepare_attention_mask(self, attention_mask, target_length):
head_size = self.heads
if attention_mask is None:
return attention_mask
if attention_mask.shape[-1] != target_length:
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
return attention_mask
class CrossAttnProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class CrossAttnAddedKVProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
residual = hidden_states
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
batch_size, sequence_length, _ = hidden_states.shape
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
return hidden_states
class XFormersCrossAttnProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query).contiguous()
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class SlicedAttnProcessor:
def __init__(self, slice_size):
self.slice_size = slice_size
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype
)
for i in range(hidden_states.shape[0] // self.slice_size):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class SlicedAttnAddedKVProcessor:
def __init__(self, slice_size):
self.slice_size = slice_size
def __call__(self, attn: "CrossAttention", hidden_states, encoder_hidden_states=None, attention_mask=None):
residual = hidden_states
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype
)
for i in range(hidden_states.shape[0] // self.slice_size):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
return hidden_states
AttnProcessor = Union[
CrossAttnProcessor,
XFormersCrossAttnProcessor,
SlicedAttnProcessor,
CrossAttnAddedKVProcessor,
SlicedAttnAddedKVProcessor,
]

View File

@ -15,7 +15,8 @@ import numpy as np
import torch
from torch import nn
from .attention import AttentionBlock, CrossAttention, DualTransformer2DModel, Transformer2DModel
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
from .cross_attention import CrossAttention, CrossAttnAddedKVProcessor
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
@ -481,11 +482,16 @@ class UNetMidBlock2DCrossAttn(nn.Module):
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
# TODO(Patrick, William) - attention_mask is currently not used. Implement once used
def forward(
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
):
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
hidden_states = resnet(hidden_states, temb)
return hidden_states
@ -544,6 +550,7 @@ class UNetMidBlock2DSimpleCrossAttn(nn.Module):
norm_num_groups=resnet_groups,
bias=True,
upcast_softmax=True,
processor=CrossAttnAddedKVProcessor(),
)
)
resnets.append(
@ -564,19 +571,19 @@ class UNetMidBlock2DSimpleCrossAttn(nn.Module):
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
def forward(
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
):
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
# attn
residual = hidden_states
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states.transpose(1, 2),
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
# resnet
hidden_states = resnet(hidden_states, temb)
@ -750,7 +757,9 @@ class CrossAttnDownBlock2D(nn.Module):
self.gradient_checkpointing = False
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
def forward(
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
):
# TODO(Patrick, William) - attention mask is not used
output_states = ()
@ -771,10 +780,15 @@ class CrossAttnDownBlock2D(nn.Module):
create_custom_forward(attn, return_dict=False),
hidden_states,
encoder_hidden_states,
cross_attention_kwargs,
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
output_states += (hidden_states,)
@ -1310,6 +1324,7 @@ class SimpleCrossAttnDownBlock2D(nn.Module):
norm_num_groups=resnet_groups,
bias=True,
upcast_softmax=True,
processor=CrossAttnAddedKVProcessor(),
)
)
self.attentions = nn.ModuleList(attentions)
@ -1338,23 +1353,23 @@ class SimpleCrossAttnDownBlock2D(nn.Module):
self.gradient_checkpointing = False
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
def forward(
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
):
output_states = ()
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
for resnet, attn in zip(self.resnets, self.attentions):
# resnet
hidden_states = resnet(hidden_states, temb)
# attn
residual = hidden_states
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states.transpose(1, 2),
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
output_states += (hidden_states,)
@ -1531,6 +1546,7 @@ class CrossAttnUpBlock2D(nn.Module):
res_hidden_states_tuple,
temb=None,
encoder_hidden_states=None,
cross_attention_kwargs=None,
upsample_size=None,
attention_mask=None,
):
@ -1557,10 +1573,15 @@ class CrossAttnUpBlock2D(nn.Module):
create_custom_forward(attn, return_dict=False),
hidden_states,
encoder_hidden_states,
cross_attention_kwargs,
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
if self.upsamplers is not None:
for upsampler in self.upsamplers:
@ -2113,6 +2134,7 @@ class SimpleCrossAttnUpBlock2D(nn.Module):
norm_num_groups=resnet_groups,
bias=True,
upcast_softmax=True,
processor=CrossAttnAddedKVProcessor(),
)
)
self.attentions = nn.ModuleList(attentions)
@ -2149,7 +2171,9 @@ class SimpleCrossAttnUpBlock2D(nn.Module):
encoder_hidden_states=None,
upsample_size=None,
attention_mask=None,
cross_attention_kwargs=None,
):
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
for resnet, attn in zip(self.resnets, self.attentions):
# resnet
# pop res hidden states
@ -2160,15 +2184,12 @@ class SimpleCrossAttnUpBlock2D(nn.Module):
hidden_states = resnet(hidden_states, temb)
# attn
residual = hidden_states
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states.transpose(1, 2),
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
if self.upsamplers is not None:
for upsampler in self.upsamplers:

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
@ -21,6 +21,7 @@ import torch.utils.checkpoint
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..utils import BaseOutput, logging
from .cross_attention import AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .unet_2d_blocks import (
CrossAttnDownBlock2D,
@ -265,6 +266,18 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
def set_attn_processor(self, processor: AttnProcessor):
# set recursively
def fn_recursive_attn_processor(module: torch.nn.Module):
if hasattr(module, "set_processor"):
module.set_processor(processor)
for child in module.children():
fn_recursive_attn_processor(child)
for module in self.children():
fn_recursive_attn_processor(module)
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
@ -341,6 +354,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[UNet2DConditionOutput, Tuple]:
r"""
@ -426,6 +440,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
@ -434,7 +449,11 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
# 4. mid
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
# 5. up
@ -455,6 +474,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
)

View File

@ -1,4 +1,4 @@
from typing import List, Optional, Tuple, Union
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
@ -7,8 +7,8 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...modeling_utils import ModelMixin
from ...models.attention import CrossAttention, DualTransformer2DModel, Transformer2DModel
from ...models.cross_attention import AttnProcessor, CrossAttnAddedKVProcessor
from ...models.embeddings import TimestepEmbedding, Timesteps
from ...models.unet_2d_blocks import UNetMidBlock2DSimpleCrossAttn as UNetMidBlockFlatSimpleCrossAttn
from ...models.unet_2d_condition import UNet2DConditionOutput
from ...utils import logging
@ -351,6 +351,18 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
self.conv_act = nn.SiLU()
self.conv_out = LinearMultiDim(block_out_channels[0], out_channels, kernel_size=3, padding=1)
def set_attn_processor(self, processor: AttnProcessor):
# set recursively
def fn_recursive_attn_processor(module: torch.nn.Module):
if hasattr(module, "set_processor"):
module.set_processor(processor)
for child in module.children():
fn_recursive_attn_processor(child)
for module in self.children():
fn_recursive_attn_processor(module)
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
@ -427,6 +439,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[UNet2DConditionOutput, Tuple]:
r"""
@ -512,6 +525,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
@ -520,7 +534,11 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
# 4. mid
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
# 5. up
@ -541,6 +559,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
)
@ -840,7 +859,9 @@ class CrossAttnDownBlockFlat(nn.Module):
self.gradient_checkpointing = False
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
def forward(
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
):
# TODO(Patrick, William) - attention mask is not used
output_states = ()
@ -861,10 +882,15 @@ class CrossAttnDownBlockFlat(nn.Module):
create_custom_forward(attn, return_dict=False),
hidden_states,
encoder_hidden_states,
cross_attention_kwargs,
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
output_states += (hidden_states,)
@ -1042,6 +1068,7 @@ class CrossAttnUpBlockFlat(nn.Module):
res_hidden_states_tuple,
temb=None,
encoder_hidden_states=None,
cross_attention_kwargs=None,
upsample_size=None,
attention_mask=None,
):
@ -1068,10 +1095,15 @@ class CrossAttnUpBlockFlat(nn.Module):
create_custom_forward(attn, return_dict=False),
hidden_states,
encoder_hidden_states,
cross_attention_kwargs,
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
if self.upsamplers is not None:
for upsampler in self.upsamplers:
@ -1166,18 +1198,23 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
# TODO(Patrick, William) - attention_mask is currently not used. Implement once used
def forward(
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
):
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
).sample
hidden_states = resnet(hidden_states, temb)
return hidden_states
# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DSimpleCrossAttn with UNetMidBlock2DSimpleCrossAttn->UNetMidBlockFlatCrossAttn, ResnetBlock2D->ResnetBlockFlat
class UnCLIPUNetMidBlockFlatCrossAttn(nn.Module):
# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DSimpleCrossAttn with UNetMidBlock2DSimpleCrossAttn->UNetMidBlockFlatSimpleCrossAttn, ResnetBlock2D->ResnetBlockFlat
class UNetMidBlockFlatSimpleCrossAttn(nn.Module):
def __init__(
self,
in_channels: int,
@ -1230,6 +1267,7 @@ class UnCLIPUNetMidBlockFlatCrossAttn(nn.Module):
norm_num_groups=resnet_groups,
bias=True,
upcast_softmax=True,
processor=CrossAttnAddedKVProcessor(),
)
)
resnets.append(
@ -1250,19 +1288,19 @@ class UnCLIPUNetMidBlockFlatCrossAttn(nn.Module):
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
def forward(
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
):
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
# attn
residual = hidden_states
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states.transpose(1, 2),
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
# resnet
hidden_states = resnet(hidden_states, temb)

View File

@ -391,6 +391,63 @@ class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
for module in model.children():
check_slicable_dim_attr(module)
def test_special_attn_proc(self):
class AttnEasyProc(torch.nn.Module):
def __init__(self, num):
super().__init__()
self.weight = torch.nn.Parameter(torch.tensor(num))
self.is_run = False
self.number = 0
self.counter = 0
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states += self.weight
self.is_run = True
self.counter += 1
self.number = number
return hidden_states
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
processor = AttnEasyProc(5.0)
model.set_attn_processor(processor)
model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample
assert processor.counter == 12
assert processor.is_run
assert processor.number == 123
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet2DModel