add clip to ddim
This commit is contained in:
parent
485797b846
commit
46dae846df
|
@ -0,0 +1,23 @@
|
|||
#!/usr/bin/env python3
|
||||
import os
|
||||
import pathlib
|
||||
from modeling_ddim import DDIM
|
||||
import PIL.Image
|
||||
import numpy as np
|
||||
|
||||
model_ids = ["ddim-celeba-hq", "ddim-lsun-church", "ddim-lsun-bedroom"]
|
||||
|
||||
for model_id in model_ids:
|
||||
path = os.path.join("/home/patrick/images/hf", model_id)
|
||||
pathlib.Path(path).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
ddpm = DDIM.from_pretrained("fusing/" + model_id)
|
||||
image = ddpm(batch_size=4)
|
||||
|
||||
image_processed = image.cpu().permute(0, 2, 3, 1)
|
||||
image_processed = (image_processed + 1.0) * 127.5
|
||||
image_processed = image_processed.numpy().astype(np.uint8)
|
||||
|
||||
for i in range(image_processed.shape[0]):
|
||||
image_pil = PIL.Image.fromarray(image_processed[i])
|
||||
image_pil.save(os.path.join(path, f"image_{i}.png"))
|
|
@ -59,6 +59,7 @@ class DDIM(DiffusionPipeline):
|
|||
|
||||
# predict mean of prev image
|
||||
pred_mean = alpha_prod_t_rsqrt * (image - beta_prod_t_sqrt * noise_residual)
|
||||
pred_mean = torch.clamp(pred_mean, -1, 1)
|
||||
pred_mean = (1 / alpha_prod_t_prev_rsqrt) * pred_mean + coeff_2 * noise_residual
|
||||
|
||||
# if eta > 0.0 add noise. Note eta = 1.0 essentially corresponds to DDPM
|
||||
|
|
Loading…
Reference in New Issue